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Abstract 

Background  Flux Balance Analysis (FBA) is a well-known bioinformatics tool for metabolic engineering design. 
Previously, we have successfully used single-level FBA to design metabolic fluxes in Bacillus subtilis to enhance (R,R)-
2,3-butanediol (2,3-BD) production from glycerol. OptKnock is another powerful technique for devising gene deletion 
strategies to maximize microbial growth coupling with improved biochemical production. It has never been used in 
B. subtilis. In this study, we aimed to compare the use of single-level FBA and OptKnock for designing enhanced 2,3-
BD production from glycerol in B. subtilis.

Results  Single-level FBA and OptKnock were used to design metabolic engineering approaches for B. subtilis to 
enhance 2,3-BD production from glycerol. Single-level FBA indicated that deletion of ackA, pta, lctE, and mmgA would 
improve the production of 2,3-BD from glycerol, while OptKnock simulation suggested the deletion of ackA, pta, 
mmgA, and zwf. Consequently, strains LM01 (single-level FBA-based) and MZ02 (OptKnock-based) were constructed, 
and their capacity to produce 2,3-BD from glycerol was investigated. The deletion of multiple genes did not nega-
tively affect strain growth and glycerol utilization. The highest 2,3-BD production was detected in strain LM01. Strain 
MZ02 produced 2,3-BD at a similar level as the wild type, indicating that the OptKnock prediction was erroneous. 
Two-step FBA was performed to examine the reason for the erroneous OptKnock prediction. Interestingly, we newly 
found that zwf gene deletion in strain MZ02 improved lactate production, which has never been reported to date. 
The predictions of single-level FBA for strain MZ02 were in line with experimental findings.

Conclusions  We showed that single-level FBA is an effective approach for metabolic design and manipulation to 
enhance 2,3-BD production from glycerol in B. subtilis. Further, while this approach predicted the phenotypes of 
generated strains with high precision, OptKnock prediction was not accurate. We suggest that OptKnock modelling 
predictions be evaluated by using single-level FBA to ensure the accuracy of metabolic pathway design. Furthermore, 
the zwf gene knockout resulted in the change of metabolic fluxes to enhance the lactate productivity.
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Background
For decades, genome-scale metabolic models (GEMs) 
have been recognized and used as a powerful bioinfor-
matics tool for biological systems. GEMs are computa-
tional reconstructions of metabolic networks that can 
be applied to a wide range of living cells, such as micro-
organisms, plants, etc. GEMs are constructed based on 
basic genome annotation and experimental data, and 
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reflect the gene–protein–reaction relationships and the 
mass, energy, and proton balance of all reactions for the 
entire set of metabolic genes in an organism [1]. Many 
software platforms and techniques have been used for 
GEM reconstruction and metabolic flux prediction for 
different applications, such as metabolic pathway design 
for microorganisms of industrial relevance. However, 
these platforms and techniques have some limitations 
[2]. Therefore, the application of GEMs for metabolic 
flux prediction by using mathematical optimization tech-
niques is continuously developed.

Flux Balance Analysis (FBA) is a mathematical optimi-
zation technique for the simulation of metabolic fluxes in 
GEMs using single-level linear programming [3, 4]. FBA 
requires non-complicated input data for model simula-
tion to resolve the objective function in a steady-state 
flux distribution using a stoichiometric matrix. It can be 
used to compare the predicted metabolic flux networks 
under different environmental conditions to identify suit-
able conditions for a set of objectives, such as biomass 
production rate. Specialized software is used to solve 
large-scale linear programming, to allow FBA calculation 
of steady-state metabolic fluxes for large models in a rela-
tively short period of time [5]. FBA has been successfully 
used in the bioengineering of many microbes to improve 
the production of fermentation compounds for various 
purposes, such as ethanol production in Scheffersomyces 
stipitis [6], (R,R)-2,3-butanediol (2,3-BD) production in 
Bacillus subtilis [7], lactate production in Lactobacillus 
plantarum WCSF1 and Lactobacillus reuteri JCM 1112 
[8], and shikimic acid production in Escherichia coli [9].

OptKnock has been developed as a guide for gene 
deletion strategies to maximize microbial cell (bio-
mass) production together with an improved biochemi-
cal production [10]. OptKnock analyzes and defines the 
metabolic reactions of GEMs that compete with micro-
bial growth reactions coupled with the production 
of target compounds to suggest reactions for possible 
deletion. It utilizes a mixed-integer linear program-
ming (MILP) solver, such as Gurobi Optimizer [11] and 
IBM ILOG CPLEX Optimizer [12]. Burgard et  al. [10] 
used OptKnock to successfully maximize the growth 
coupling with succinate, lactate, and 1,3-propanediol 
production in E. coli. As another example, Pharkya 
et al. [13] used OptKnock to design metabolic pathways 
for the overproduction of amino acids glutamate, ser-
ine, aspartate, and alanine in E. coli. Further, Feist et al. 
[14] used OptKnock in E. coli GEM (iAF1260 model) 
to identify patterns for gene deletion solutions, with 
optimization for 3- to 5-gene deletions, to improve the 
production of multiple native products in E. coli from 
various types of substrates.

Glycerol is a promising low-cost, renewable, and non-
food competitive substrate compared to glucose, which 
is the main raw material used in the biological fermen-
tation process. The price of high-purity crude glycerol 
(80–90%) is about 0.00–0.11 USD/kg, whereas the price 
of glucose is comparatively more expensive (3.37 USD/
kg) [15]. Thus, glycerol is a good alternative resource for 
the bioindustry. It is used for the production of (R,R)-
2,3-butanediol (2,3-BD), a useful chemical compound 
that has several applications, such as in printing ink, 
antifreeze agents, foodstuffs, and pharmaceuticals [16]. 
Furthermore, it can be used as the starting compound 
for the production of other valuable compounds, such 
as 1,3-butadiene, acetoin, and diacetyl [17]. Further, the 
bioproduction of 2,3-BD has a variety of advantages over 
chemical processes, mainly related to the production 
costs and environmental concerns [18].

B. subtilis is accepted as a “generally recognized as safe” 
organism that grows in the presence of high levels of fer-
mentation products, such as volatile fatty acids (VFAs), 
and does not generate endotoxins, unlike gram-negative 
bacteria, such as E. coli [19]. It is an ideal platform micro-
organism for bioengineering to improve the production 
of various useful compounds, such as amino acids, lac-
tate, acetate, acetoin, and 2,3-BD.

Previously, we successfully used single-level FBA to 
design and evaluate the effect of gene knockouts for 
enhanced 2,3-BD production from glycerol in B. subtilis 
[7]. The predictions of single-level FBA, which focused 
on “biomass production” as the only objective function, 
suggested deletion of four genes (namely, ackA gene 
encoding acetate kinase; pta gene encoding phosphate 
acetyltransferase; lctE gene encoding l-lactate dehydro-
genase; and mmgA gene encoding acetyl-CoA acetyl-
transferase) to enhance the production of 2,3-BD from 
glycerol in iYO844 GEM. The deletion resulted in a 2,3-
BD yield increase by 43.75%, compared to that from the 
wild-type strain. However, another strategy, OptKnock, 
has never been applied for improving bio-production in 
B. subtilis.

In the current study, we investigated the use of single-
level FBA and OptKnock to manipulate the metabolic 
flux network of B. subtilis for improved 2,3-BD produc-
tion from glycerol. We used B. subtilis GEM (iYO844 
model) constructed by Oh et  al. [20] to design a proto-
type of the metabolic pathways in B. subtilis for 2,3-BD 
production from glycerol that showed the most reliable 
performance with glycerol as a sole carbon source in 
M9 medium. We then constructed B. subtilis deletion 
mutants following the predictions of single-level FBA and 
OptKnock, and evaluated changes in the fermentation 
profile of the resultant strains and wild-type B. subtilis 
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strain (W168). We also inspected the accuracy of in silico 
predictions with the fermentation profile.

Results and discussion
Single‑level FBA and OptKnock designs 
for the improvement of 2,3‑BD production from glycerol 
in B. subtilis
We used single-level FBA and OptKnock to redesign 
metabolic pathways in B. subtilis to enhance 2,3-BD 
production from glycerol. We created a metabolic path-
way of glycerol dissimilation following flux distribution 
based on the results of single-level FBA and OptKnock 
in iYO844 GEM with glycerol as a sole substrate (Fig. 1). 
Single-level FBA design was based on eliminating the fer-
mentative products competing with 2,3-BD production, 
as described in our previous study [7]. The only objective 
function was biomass production. According to single-
level FBA, the inhibition of four reactions, namely, ACKr 
(ack), PTAr (pta), LDH_L (lctE), and ACACT1r (mmgA), 

would enhance 2,3-BD production (Table 1). The removal 
of ACKr (ack) and PTAr (pta) reaction was predicted 
to reduce acetate production. The removal of LDH_L 
(lctE) reaction was predicted to inhibit lactate produc-
tion. Finally, the removal of ACACT1r (mmgA) reaction 
was predicted to block the production of acetoacetate. 
According to single-level FBA, inhibition of these four 
reactions would improve the 2,3-BD production from 
0 to 2.54  mmol/gCDW/h (CDW, cell dry weight), com-
pared with the flux in the wild-type strain.

OptKnock suggested a different strategy, with the 
improvement of growth (biomass production) coupling 
with the improvement of 2,3-BD production set as the 
objective functions. The modelling suggested the removal 
of the ACKr (ack), PTAr (pta), ACACT1r (mmgA), and 
G6PDH2r (zwf) reactions. Considering the flux dis-
tribution, the biomass production would increase to 
0.35  mmol/gCDW/h, with 2,3-BD production at a level 
of 2.10  mmol/gCDW/h, with the acetate production 

Fig. 1  Metabolic pathway of glycerol dissimilation into 2,3-butanediol in B. subtilis. Blue arrows indicate metabolic fluxes, and delta symbol (∆) 
followed by gene abbreviation (red font) indicates the genes suggested for knockout by single-level FBA and OptKnock. Gene abbreviations 
refer to the encoded enzymes, namely: ack, acetate kinase; pta, phosphate acetyltransferase; lctE, l-lactate dehydrogenase; mmgA, acetyl-CoA 
C-acetyltransferase; and zwf, glucose 6-phosphate dehydrogenase
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decreased to 0.15 mmol/gCDW/h (Table 1). Of note, the 
flux to lactate production became zero in the model, even 
though the LDH_L (lctE) reaction was not removed. To 
the best of our knowledge, the knockout of the zwf gene 
to enhance 2,3-BD production has not been reported to 
date. Hence, the analysis suggested that deletion of these 
genes would impede lactate production and improve 2,3-
BD production.

We subsequently constructed mutant strains of B. sub-
tilis based on the gene deletions suggested by single-level 
FBA (strain LM01) and OptKnock (strain MZ02) predic-
tions, and investigated 2,3-BD production during fer-
mentation, with the wild-type strain (W168) as a control. 
The results of these analyses are described below.

Effect of gene deletions on the fermentation profile of B. 
subtilis
2,3-BD production from glycerol in B. subtilis strains was 
evaluated using batch fermentation. The deletion of mul-
tiple genes in strains LM01 (ackA, pta, lctE, and mmgA) 
and MZ02 (ackA, pta, mmgA, and zwf) did not notably 
negatively affect bacterial growth (Fig.  2). Biomass pro-
duction during logarithmic (24 h), early stationary (36 h), 
and late stationary phases (48 h) was similar in all strains. 
The major fermentation products were acetate, lactate, 
acetoin, and 2,3-BD, with only a minor production of 
ethanol, succinate, pyruvate, and diacetyl during the 
experiment.

We compared the yields of major fermentation prod-
ucts and glycerol utilization by all strains during each 
growth phase (Table 2). Glycerol utilization in all strains 
was not affected by the growth phase, and the multiple-
gene knockouts did not strongly affect glycerol utilization 
of the strains. Total biomass production by the W168, 
LM01, and MZ02 strains was 4.35 ± 0.05, 4.44 ± 0.10, and 

4.03 ± 0.19  mmol/L, respectively. The wild-type strain 
(W168) produced acetate and lactate as the major fer-
mentation products during the logarithmic phase, with 
these VFAs converted together with glycerol to acetoin 
and 2,3-BD during the stationary phase.

Considering the deletion of ackA and pta genes in the 
LM01 and MZ02 strains, acetate production was inhib-
ited during the logarithmic phase; however, acetate was 
detected when the growth reached the early stationary 
phase. This was in agreement with our previous observa-
tions [7]. Similar, Fu et al. [21] suggested that the knock-
out of the pta gene does not inhibit acetate production 
in B. subtilis, which might be generated via pathways for 
acetate or acetyl-phosphate production from other pre-
cursors in this bacterium. Indeed, based on metabolic 
pathways that operate in B. subtilis 168 (Kyoto Encyclo-
pedia of Genes and Genomes) [22], acetate can be pro-
duced via many pathways not included in the iYO844 
model, e.g., one involving the ydap gene (BSU04340, 
EC:1.2.3.3) and yflL gene (BSU07640, EC:3.6.1.7), which 
convert pyruvate to acetyl phosphate, and then acetate. 
These missing reactions should be analyzed and the 
information gap filled to improve the iYO844 GEM.

In addition to the above, the LM01 strain lacks the lctE 
and mmgA genes. Knocking out lctE suppressed lactate 
production during fermentation. The product of this gene 
is the main competitor of the 2,3-BD production reac-
tion, competing for NADH consumption [7]. Accord-
ingly, deletion of the lctE or ldh gene improves 2,3-BD 
production in different bacteria [21, 23, 24]. Further, 
improvement of 2,3-BD production by mmgA knockout 
was shown in a previous study [7]. In the current study, 
the maximum yield of 2,3-BD was 0.28 mol/mol‧glycerol, 
which was the highest productivity noted among the 
compared strains. In addition, the LM01 strain produced 
only a small amount of acetoin, as NADH availability 
directly drove the metabolic pathway involved towards 
2,3-BD production.

In the MZ02 strain, in addition to ackA and pta, the 
mmgA gene was also deleted to promote 2,3-BD pro-
duction. However, together with the deletion of the zwf 
gene, this did not improve 2,3-BD production (Table 2). 
The highest yield of 2,3-BD was 0.19  mol/mol‧glycerol, 
which was equal to the highest yield of 2,3-BD obtained 
with the wild-type strain. Surprisingly, lactate was pro-
duced during the logarithmic phase at a remarkably high 
level, compared to that in other strains, with the high-
est yield of 0.22  mol/mol‧glycerol, in the early station-
ary phase. In a previous study, lactate yield of B. subtilis 
XZ7 strain was improved by the deletion of the alsS gene 
(encoding α-acetolactate synthase), which inhibited the 
production of 2,3-BD [25]. Apart from genetic engineer-
ing in B. subtilis, modifications of some genes in E. coli 

Table 1  Flux distribution indicated by different engineering 
approaches in different strains to enhance 2,3-BD production 
(mmol/gCDW/h)a

a Glycerol utilization and oxygen consumption were set to 10 mmol/gCDW/h 
(see Methods)
b OptKnock objectives were set for growth coupling with 2,3-BD production. The 
reactions suggested for gene knockout were: ACKr (ack), PTAr (pta), ACACT1r 
(mmgA), and G6PDH2r (zwf). This informed the construction of MZ02 strain
c LM01 was designed to be unable to perform four reactions, namely, ACKr (ack), 
PTAr (pta), LDH_L (lctE), and ACACT1r (mmgA)

Method Single-level FBA OptKnockb

B. subtilis strain W168 LM01c W168

Biomass production 0.30 0.28 0.35

Acetate exchange 3.78 0.12 0.15

l-Lactate exchange 2.00 0.00 0.00

(R,R)-2,3-BD exchange 0.00 2.54 2.10
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were tested for improved lactate production, e.g., by 
removing reactions competing for pyruvate, such as the 
ethanol/acetate metabolic pathway, or precursor reac-
tions converting phosphoenolpyruvate into succinate 
[26]. To the best of our knowledge, we report here for 

the first time that the knockout of the zwf gene, which 
is related to glycerol dissimilation to the pentose phos-
phate pathway, enhances the production of lactate. Con-
sidering the single-level FBA predictions, the increase 
in lactate production might be driven by a decreased 

Fig. 2  Fermentation profiles, including growth, glycerol utilization, and VFA production of B. subtilis strains. Data for the following strains are shown: 
W168 (A), LM01 (B), and MZ02 (C). The data are presented as the mean ± standard deviation of three independent experiments (n = 3)
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metabolic flux from dihydroxyacetone phosphate (dhap) 
to d-fructose 1,6-bisphosphate (fdp) as a result of the zwf 
gene deletion, with lactate produced by the conversion 
of dihydroxyacetone phosphate (dhap) to glyceraldehyde 
3-phosphate (g3p) (Fig.  3). Hence, the improved flux of 
glyceraldehyde 3-phosphate dehydrogenase reaction 
(EC:1.2.1.12; BSU33940) increased the amount of NADH 
in the system. NADH is consumed in the conversion of 
pyruvate to lactate and 2,3-BD, which provides a redox 
balance in the biosynthetic system of B. subtilis. And the 
primary product of fermentation is lactate [27]. Together 
with the increase of metabolic flux from glyceraldehyde 

3-phosphate to pyruvate, this resulted in increased lac-
tate production.

Finally, in the MZ02 strain, acetate and lactate were 
converted into acetoin and 2,3-BD during the stationary 
phase, similar to their conversion in the wild-type strain. 
Since we observed that the gene deletion suggested by 
OptKnock did not increase 2,3-BD production, we next 
proceeded to identify the reason for this inaccuracy. 
Additionally, the change of phenomenon during the fer-
mentation process is over the ability of single-level FBA 
to analyze. Because FBA can perform only one environ-
mental condition using the linear programming solver. 

Table 2  Major VFA yields and glycerol utilization during B. subtilis growth

The data are presented as the mean ± [error] (n = 3)

Strain VFA (mol/mol‧glycerol) at 0–24 h Total glycerol utilization (mmol)
Acetate Lactate Acetoin 2,3-BD

W168 0.27 ± 0.02 0.17 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 13.4 ± 0.37

LM01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.03 ± 0.05 8.4 ± 0.16

MZ02 0.03 ± 0.03 0.21 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 10.6 ± 1.64

Strain VFA (mol/mol‧glycerol) at 24–36 h Total glycerol utilization (mmol)
Acetate Lactate Acetoin 2,3-BD

W168 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.03 ± 0.02 9.7 ± 3.75

LM01 0.12 ± 0.02 0.00 ± 0.00 0.00 ± 0.01 0.05 ± 0.00 11.7 ± 1.79

MZ02 0.09 ± 0.01 0.01 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 13.1 ± 0.45

Strain VFA (mol/mol‧glycerol) at 36–96 h Total glycerol utilization (mmol)
Acetate Lactate Acetoin 2,3-BD

W168 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.00 0.16 ± 0.01 69.9 ± 1.10

LM01 0.02 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 0.20 ± 0.01 63.8 ± 1.71

MZ02 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.00 0.14 ± 0.01 69.6 ± 3.29

Fig. 3  Metabolic fluxes illustrating the enhancing effect of zwf gene knockout on the production of lactate. Blue arrows indicate unchanged 
metabolic fluxes. Red arrows indicate flux decrease relative to wild-type level. Green arrows indicate flux increase relative to wild-type level
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Whereas, the dynamic FBA, which is another cobra tool-
box’s function, may be able to analyze this phenomenon.

Comparison of FBA and OptKnock predictions 
with experimental data for MZ02 strain
OptKnock focuses on two objective functions, i.e., cell 
growth and 2,3-BD production, suggesting non-essential 
reactions and those competing with biomass and 2,3-BD 
production for removal. The modelling suggested that 
deletion of four specific reactions (genes) would enhance 
the biomass and 2,3-BD production in B. subtilis, to 0.35 
and 2.10  mmol/gCDW/h, respectively (Table  3). How-
ever, the experimental data did not confirm these pre-
dictions. We hence used a two-step FBA simulation to 
identify the reason for this discrepancy.

Two-step FBA simulates metabolic distribution before 
gene deletion. We set objective functions similar to those 
of OptKnock, by maximizing biomass production as the 
first target and maximizing 2,3-BD production as the sec-
ond target (Table 3). Biomass production by the wild type 
predicted by using two-step FBA was the same as that 
predicted using single-level FBA (0.3  mmol/gCDW/h, 
Tables 1 and 3). However, the major produced VFAs pre-
dicted by two-step FBA (acetate and 2,3-BD) were differ-
ent from those predicted by single-level FBA (acetate and 
lactate). This revealed the underlying reason for the inac-
curate prediction of OptKnock. Specifically, since acetate 
and lactate were detected as the major VFA produced in 
single-level FBA, the reactions for their production were 
given priority for removal. On the other hand, two-step 
FBA considered acetate and 2,3-BD as the major prod-
ucts and, consequently, only suggested the reactions for 

acetate production for removal. LDH_L (lctE) reaction 
was not considered for removal because the initial flux 
of this reaction was zero. Whereas the flux of zwf gene 
was 0.85 mmol/gCDW/h, which OptKnock selected this 
reaction as the priority of targeted genes for deletion. 
This strategy might have led to a bias when assessing 
biomass and 2,3-BD production, and contributed to the 
erroneous identification of reactions for removal.

We analyzed the MZ02 strain by single-level FBA, 
with the biomass production as the only objective func-
tion. The predictions corresponded to the experimen-
tal data, especially for the logarithmic phase of growth 
(Tables 2 and 3). The production of acetate was negligi-
ble, whereas the production of lactate was higher than 
that in the wild-type strain. The predictions of single-
level FBA for strains W168 and LM01 were also in line 
with the experimental results (Tables  1 and 2). Hence, 
we suggest that single-level FBA be accepted as a reli-
able approach for the design and evaluation of meta-
bolic pathways, as OptKnock was not be applicable to 
the GEM in the current study. In the case of the current 
study, a recombinant B. subtilis strain should be con-
structed to allow the conversion of the entire intracel-
lular pyruvate pool to 2,3-BD, not lactate.

Many factors might impact the predictions of Opt-
Knock, such as the degree of completion of the entire 
metabolic pathways in GEM, the use of solvers for prob-
lem function, and so on. Nonetheless, the successful 
use of OptKnock to optimize biochemical production 
of native products, especially in the E. coli model, was 
shown in many studies [10, 13, 14]. Overall, we recom-
mend evaluating the OptKnock predictions by using 
single-level FBA to ensure the precision of the designed 
metabolic pathway.

Conclusions
We here investigated the use of OptKnock and single-
level FBA simulations for designing metabolic fluxes to 
enhance the production of 2,3-BD from glycerol in B. 
subtilis. We have previously successfully used single-level 
FBA to design and evaluate the effect of gene knockouts 
to enhance 2,3-BD production from glycerol in B. subtilis 
via iYO844 GEM. Single-level FBA suggested the deletion 
of four genes (ackA, pta, lctE, and mmgA; LM01), while 
OptKnock suggested the deletion of a different gene set 
(ackA, pta, mmgA, and zwf; MZ02). We detected the 
highest 2,3-BD production in strain LM01, with the 2,3-
BD production in MZ02 strain similar to that in the wild-
type strain. Consequently, we conducted two-step FBA 
to examine the reason for the erroneous OptKnock pre-
diction. We observed no flux distribution of lactate after 
maximizing two objective functions (biomass and 2,3-BD 
production). Surprisingly, lactate production in strain 

Table 3  Comparison of flux distribution predicted by different 
engineering approaches for different strains (reaction unit: 
mmol/gCDW/h)a

a Glycerol utilization and oxygen consumption were set to 10 mmol/gCDW/h 
(see Methods)
b OptKnock objectives were set for growth coupling with 2,3-BD production. The 
reactions suggested for gene knockout were: ACKr (ack), PTAr (pta), ACACT1r 
(mmgA), G6PDH2r (zwf)
c Two-step FBA was conducted with the production flux of the target compound 
maximized with the biomass growth rate, which was fixed at its maximum 
value. Specifically, the element corresponding to the production of the target 
compound in a column array containing the objective function coefficients was 
set to 10−5

d MZ02 was designed to be unable to perform four reactions, namely, ACKr (ack), 
PTAr (pta), ACACT1r (mmgA), and G6PDH2r (zwf)

Method OptKnockb Two-step FBAc Single-level FBA
B. subtilis strain W168 W168 MZ02d

Biomass production 0.35 0.30 0.28

Acetate exchange 0.15 3.12 0.12

l-Lactate exchange 0.00 0.00 4.69

(R,R)-2,3-BD exchange 2.10 1.35 0.00
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MZ02 was significantly higher than that in the wild-type 
strain, which we linked, for the first time, to zwf deletion. 
Predictions of single-level FBA for the MZ02 strain cor-
responded to the experimental data, as also the predic-
tions of single-level FBA for the LM01 and wild-type 
strains. Consequently, we propose single-level FBA as 
one of the reliable methods for the design and evaluation 
of metabolic pathways of microbial GEMs. We also rec-
ommend evaluation of OptKnock predictions by using 
single-level FBA to confirm the accuracy of the designed 
metabolic pathway.

Methods
In silico simulations of single‑level FBA, OptKnock, 
and two‑step FBA
In the present study, the iYO844 GEM of B. subtilis 168, 
constructed by Oh et al. [20] and available in BiGG Mod-
els [28], was used. Three approaches (single-level FBA, 
OptKnock, and two-step FBA) were used to simulate 
metabolic flux distributions. The environmental condi-
tions corresponding to M9 minimal medium for B. subti-
lis were set to the lower bounds of necessary metabolites 
to allow limitless uptake by the exchange reactions. In 
all simulation approaches, the maximum uptake rate of 
glycerol was set at –10  mmol/gCWD/h, with glycerol 
as the sole carbon source, and the oxygen consumption 
was limited to –10  mmol/gCWD/h to provide faculta-
tive anaerobic conditions. The reactions involving alco-
hol dehydrogenases (ALCD19_D and ALCD19_L) were 
removed from GEM, based on Kalantari et  al. [29]. The 
COBRA toolkit [30] was used in MATLAB software 
2019b (MathWorks, Inc., Natick, MA) for all simulations 
of metabolic flux distributions.

Single-level FBA was conducted by using the solver of 
the commercial GNU Linear Programming Kit (GLPK) 
package [31]. The solver can be used for large-scale lin-
ear programming and mixed-integer programming. Bio-
mass production was set to maximize the target product 
as a sole objective function. Single-level FBA was used 
to evaluate the metabolic flux distributions of wild-type 
and multiple-gene deletion strains. For gene deletions, 
the minimum and maximum bounds of the fluxes of 

reactions related to the deletion of target genes were set 
to zero. Table 4 lists the reactions in the iYO844 model 
related to the deletion of target genes in B. subtilis in 
the current study. Based on the single-FBA predictions, 
a multiple-gene deletion mutant of the wild-type strain 
(W168) was constructed (see below) to increase the pro-
duction of 2,3-BD (strain LM01; deletion of the ACKr, 
PTAr, LDH_L, and ACACT1r reactions).

OptKnock analysis was performed to determine puta-
tive gene deletions in the wild-type strain (W168) for 
enhanced growth coupling with 2,3-BD production. A 
solver for MILP problem is required for OptKnock sim-
ulation; consequently, the Gurobi Optimizer package 
[11] was used. The package can be applied to all major 
problem types, such as linear programming, MILP, quad-
ratic programming, and mixed-integer quadratic pro-
gramming. The non-essential genes of B. subtilis wild 
type for use in this approach have been determined [32, 
33]. The available reactions for OptKnock involving the 
non-essential B. subtilis genes, and not concerning the 
exchange reactions and transporter reactions in the 
iYO844 model, were set as the available gene targets for 
deletion by OptKnock (Additional file  1). Based on the 
OptKnock predictions, strain MZ02 was constructed 
(see below; deletion of the ACKr, PTAr, ACACT1r, and 
G6PDH2r reactions).

To inspect the erroneous predictions of OptKnock, 
two-step FBA was performed by defining two objective 
functions for maximization in the wild-type strain, simi-
lar to OptKnock simulation. Biomass production was set 
as the major product and 2,3-BD production was set the 
minor product. Specifically, the element corresponding 
to 2,3-BD production in a column array containing the 
objective function coefficients was set to 10−5. The GLPK 
package was used as a solver. Two-step FBA was used 
to predict the major fermentation products of the wild-
type strain by using two objective functions. The predic-
tions were compared with those of single-level FBA and 
OptKnock.

Finally, single-level FBA was used to evaluate the meta-
bolic flux distribution in MZ02 strain, with the biomass 
production set as an objective function, to compare the 

Table 4  Correlation of reactions in the iYO844 model with genes and enzymes of B. subtilis 

a Data from National Center for Biotechnology Information (NCBI) (accession number: NC_000964.3; accessed 1 April 2022)

Model reaction Genea Enzyme Locus tag EC number

ACKr ackA Acetate kinase BSU29470 2.7.2.1

PTAr pta Phosphate acetyltransferase BSU37660 2.3.1.8

LDH_L lctE l-Lactate dehydrogenase BSU03050 1.1.1.27

ACACT1r mmgA Acetyl-CoA C-acetyltransferase BSU24170 2.3.1.9

G6PDH2r zwf Glucose 6-phosphate dehydrogenase BSU23850 1.1.1.49
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predicted fermentation profile with the experimental 
results.

Strains and plasmid construction
B. subtilis wild-type 168 (W168) was obtained from the 
Microbe Division at the RIKEN BioResource Research 
Center, Japan. CRISPR-Cas9 system was used for gene 
knockout in B. subtilis [34]. E. coli NovaBlue (Novagen, 
Cambridge, MA) was used for plasmid construction. The 
strains and plasmids used in the current study are listed 
in Table  5. Plasmid construction for gene knockout is 
described elsewhere [7].

Culture media and fermentation conditions
Luria–Bertani (LB) liquid medium, containing (per 
liter) 10.0  g tryptone, 5.0  g yeast extract, and 10.0  g 
sodium chloride, was used for the maintenance of all 
strains and plasmid construction. All strains were pre-
served at –80 °C and re-activated on LB agar plates (LB 
medium supplemented with 1.5% (w/v) bacto-agar). 
M9 medium for B. subtilis [35], which contained glyc-
erol as the sole carbon source (10  g/L), was used in 
experiments evaluating the production of 2,3-BD. The 
fermentation process was started by inoculating B. sub-
tilis colonies in M9 medium (5  mL) and incubating at 
37 °C, 180 rpm, overnight. After that, 1% (v/v) of over-
night culture was placed in M9 medium and incubated 
at 37 °C, 180 rpm, for 18 h. Finally, 0.5% (v/v) of the cul-
ture was used as the seed culture for the experiment. 
The cells were grown under micro-aerobic conditions in 
120 mL of M9 medium, incubated at 37 °C and 100 rpm 
for 96  h. The liquid medium was periodically sampled 
and bacterial growth, and the concentration of glycerol 
and fermentation products (acetate, lactate, pyruvate, 
succinate, diacetyl, acetoin, 2,3-BD, and ethanol) deter-
mined, as described below.

Analytical methods
The growth of B. subtilis cells was determined by moni-
toring the culture optical density at 600  nm (OD600) 
using a UVmini-1240 spectrophotometer (Shimadzu, 
Kyoto, Japan). CDW was calculated based on the OD600 
readings by using the 1  g CDW/L per OD600 ratio of 
0.325 [36]. The biomass formula of a microbial cell is 
C5H7O2N, with the molecular weight of 113 g/mol [37], 
and was used to convert CDW into the moles of microbial 
biomass. The concentration of glycerol and fermentation 
products was analyzed by using high-performance liquid 
chromatography instrument (Shimadzu, Japan) equipped 
with a UV/RI detector and an Aminex HPX-87H column 
(300 × 7.8 mm., Bio-Rad, USA). The chromatography sys-
tem was operated at 55 °C, with 10-μL sample injection. 
The flow rate of the mobile phase (5 mM H2SO4) was set 
at 0.5 mL/min. The chromatography data were compared 
to the standard curves of glycerol, acetate, lactate, pyru-
vate, succinate, diacetyl, acetoin, 2,3-BD, and ethanol.
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Strain or plasmid Genotype or relevant characteristic Reference

Strains
  E. coli Nova blue endA1 hsdR17(rK12

−mK12
+) supE44 thi-I gyrA96 relA1 lac recA1/F’[proAB + lacIq ZΔM15::Tn10(Tetr)] Novagen

  B. subtilis W168 trpC2 JMCa

  B. subtilis LM01 trpC2 ∆ackA ∆pta ∆lctE ∆mmgA [7]

  B. subtilis MZ02 trpC2 ∆ackA ∆pta ∆mmgA ∆zwf This study

Plasmids
  pJOE8999 KanR, PmanPA-cas9, PvanP*, lacPOZ’-gRNA, oop ter, T7P, repE194ts, pUCori [34]

  pJOE_ackA pJOE8999 derivative harboring 20-nt spacer for ackA gene targeting and homologous arms for fusion [7]

  pJOE_pta pJOE8999 derivative harboring 20-nt spacer for pta gene targeting and homologous arms for fusion [7]

  pJOE_mmgA pJOE8999 derivative harboring 20-nt spacer for mmgA gene targeting and homologous arms for fusion [7]

  pJOE_zwf pJOE8999 derivative harboring 20-nt spacer for zwf gene targeting and homologous arms for fusion This study
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