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Abstract 

Background: Recently, drug repositioning has received considerable attention for its advantage to pharmaceutical 
industries in drug development. Artificial intelligence techniques have greatly enhanced drug reproduction by dis‑
covering therapeutic drug profiles, side effects, and new target proteins. However, as the number of drugs increases, 
their targets and enormous interactions produce imbalanced data that might not be preferable as an input to a 
prediction model immediately.

Methods: This paper proposes a novel scheme for predicting drug–target interactions (DTIs) based on drug chemical 
structures and protein sequences. The drug Morgan fingerprint, drug constitutional descriptors, protein amino acid 
composition, and protein dipeptide composition were employed to extract the drugs and protein’s characteristics. 
Then, the proposed approach for extracting negative samples using a support vector machine one‑class classifier was 
developed to tackle the imbalanced data problem feature sets from the drug–target dataset. Negative and positive 
samplings were constructed and fed into different prediction algorithms to identify DTIs. A 10‑fold CV validation test 
procedure was applied to assess the predictability of the proposed method, in addition to the study of the effective‑
ness of the chemical and physical features in the evaluation and discovery of the drug–target interactions.

Results: Our experimental model outperformed existing techniques concerning the curve for receiver operating 
characteristic (AUC), accuracy, precision, recall F‑score, mean square error, and MCC. The results obtained by the Ada‑
Boost classifier enhanced prediction accuracy by 2.74%, precision by 1.98%, AUC by 1.14%, F‑score by 3.53%, and MCC 
by 4.54% over existing methods.
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Introduction
Predicting DTIs for prospective drugs plays an essential 
role in drug discovery. It helps in understanding biologi-
cal operations and reduces the costs of drug discovery 
[1, 2]. However, there are many challenges in predicting 
DTIs. For example, many positive and negative effects 
of drugs are hard to detect and explain. In the last few 

years, there have been significant efforts to overcome 
these challenges and predict DTIs. In addition, because 
the Human Genome Project has been completed and 
molecular medicine is being continuously developed, 
more unknown DTIs have been discovered. However, the 
number of analytically validated drug–target interactions 
is still very small, prompting research scientists to devise 
novel computational approaches to overcome these chal-
lenges for potential DTI prediction [3].

An enormous amount of DTI data is produced after 
the development of high-performing computational 
technologies. Several popular databases, such as KEGG 
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[4], DrugBank [5], ChEMBL [6], STITCH [7], and TTD 
[8], that have been created to store confirmed data and 
to provide relevant recovery information are useful for 
setting up efficient computational methods for the opti-
mal prediction of DTIs.

Typical DTI computational schemes can be portioned 
into three categories: ligand-based, simulation dock-
ing, and chemogenomic schemes. First, ligand-based 
schemes utilize target protein similarity to predict 
interactions between a drug’s chemical structures and 
protein sequences [9].

Second, docking-based schemes use dynamic imita-
tions of a target protein to discover novel, unknown 
interactions. Such schemes are a prospective tech-
nology that enforces the 3D structure of proteins to 
address the prediction stage [10].

Chemogenomic schemes establish a prediction model 
depending on graph theory [11, 12], network methods 
[13, 14], and techniques based on machine learning [15, 
16]. Among the chemogenomic approaches, machine-
learning approaches are regarded as the most dependable 
for predictive outcomes. Machine-learning approaches 
can be categorized into features or similarity method.

Similarity techniques have been developed to calcu-
late the similarity among drug compounds and target 
proteins [17, 18]. Similarity-based techniques contain 
matrix factorization [13], kernel-based approaches, and 
graph-based approaches [11].

Feature methods represent target–drug pairs with a 
vector with a carrier of prescriptions. Different prop-
erties of target–drug pairs have been coded as related 
features. In feature techniques, the DTIs are predicted 
by detecting the most distinct features. Hence, the 
inputs to these techniques are different vectors result-
ing from a combination of the properties of drugs and 
targets. These vectors have been computed by specify-
ing a coding characteristic or bioinformatics software 
package that can perforce calculate its chemical and 
biological characteristics. Because these vectors usually 
have many dimensions, some methods use dimension-
ality reduction approaches to decrease the number of 
features, thus improving the performance model and 
prediction efficiency.

In drug–target interaction prediction, many types of 
features were used for both drugs and targets, such as 
in [19], where the authors used drug feature vectors of 
constitutional, topological, and geometrical descrip-
tors. The protein features used are amino acid, pseudo 
amino acid, and composition, transition, and distribu-
tion (CTD) descriptors. In addition, [20] used Morgan 
molecular fingerprints for the drug feature vector, and 
the protein feature was 20 amino acids. There are many 
medical libraries used to find these features, such as the 

RDKit library [21], RCPI library [22], and PyBioMed 
library [23].

Several ML techniques such as XGBoost [24], deep 
learning [16], support vector machine (SVM) [25], and 
nearest neighbor are used for discovering possible DTI 
features more effectively.

We are developing a framework for DTI prediction that 
uses the most popular drug-molecular fingerprinting, 
Morgan fingerprints [26], also known as ECFP4 extended 
conduction fingerprints. Morgan fingerprints have been 
generated as binary. Morgan fingerprints are often used 
in the predictive modeling of bioactivity to allow mean-
ingful chemical diffusion to be decoded into the chemical 
space.

The secondary characteristic of drugs is its consti-
tutional descriptors, which are the easiest molecular 
descriptors that can be calculated from the molecular 
structure. Constitutional recipes include all those rep-
resenting a molecular structure, which regards only the 
chemical structure and does not encode information 
regarding topology and general geometry.

We apply the most common property for proteins, 
which consists of long chains of α-amino (alpha-amino) 
acids [27]. The AAC knows the number of amino acids 
of each type normalized with the overall number of 
residues.

The secondary feature of proteins is the dipeptide com-
position [28, 29], which is useful over simple AAC, which 
provides a composition of a pair of residues present in 
the peptide. Dipeptide composition constitutes a better 
feature than AAC as it encases the information of both 
amino acid fraction and the local sort of amino acids.

In this paper, we presented a DTI prediction model 
dependent on the drug chemical structures and protein 
sequencing of trait extraction using a medical library. We 
developed an approach to predict negative samples using 
an SVM one-class classifier to overcome the imbalance 
problem between negative and positive samplings and 
then built four feature sets from the negative and positive 
sampling drug–target datasets. Finally, these feature sets 
were imputed into the prediction algorithm to determine 
the DTI.

The major contributions in this paper could be summa-
rized as follows:

 i. An approach for predicting negative samples using 
an SVM one-class classifier for handling imbalance 
problems between negative and positive samplings 
that had not been effectively addressed in existing 
approaches was developed.

 ii. Four feature sets from the four types of drug–tar-
get features and the negative and positive samples 
were constructed. Then, these feature sets were 
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applied to various types of machine-learning algo-
rithms to predict DTIs.

 iii. The proposed approach was compared to existing 
models, indicating the superiority of the proposed 
model by achieving the best performance scores 
across the DrugBank dataset. The results of the 
proposed model outperformed recent research in 
the field of DTI. The proposed model obtained an 
average accuracy 2.74% higher than that of recent 
studies and AUC, F-score, and MCC of 1.14, 3.53, 
and 4.54%, respectively.

 iv. Propose the feature analysis using feature impor-
tance and data set balancing.

This paper is structured as follows. In Section 2, exist-
ing related methods of DTIs are presented. Our proposed 
framework, together with a detailed description of the 
used techniques and datasets, is presented in Section 3. 
In Section 4, the results and discussion are provided. The 
feature analysis, data balancing and comparison with the 
latest methods: are presented in Section 5,6. Finally, the 
conclusion is described in Section 7.

Related work
In recent years, several approaches using machine-learn-
ing algorithms have been elaborated for DTI prediction 
initiatives. In general, first, a library was used to extract 
the drug and target features from the input data. Then, 
positive and negative samples were identified and then 
inputted into prediction methods. Finally, the model was 
evaluated using evaluation matrices.

Table  1 shows that DTI-SNFRA   [30] works in two 
phases: first, it uses an SNN, followed by a search space-
partitioning group, and then, it calculates the degree of 
fuzzy-raw approximation and selects the appropriate 
degree threshold for excitation samples’ undercounting 
from all possible drug–target interaction pairs obtained 
in the first stage. In [31] and [16] the deep learning struc-
tures models discovered local survival patterns the target 
successfully enriches protein advantages of the raw pro-
tein sequence, leading to greater predictive results than 
related approaches. In [32], the authors presented a multi 
kernel-based learner along with decreased features and 
extracted prediction scores to indicate the results, while 
The authors in [33]  developed a FastUS algorithm was 
used to overcome the class imbalance constraint. The 
authors in [20] presented a method for DTI prediction 
using LOOP and Matrix (PSSM). In particular, LOOP is 
used for extracting feature vectors from PSSM. By con-
trast, the authors in [34] used the features tested with the 
(E-state) fingerprints of the drug smiles and (APAAC) of 
the protein sequences. In [35], the authors developed a 
new heterogeneous multi molecule information network 

created by a combination of n-known connections 
between proteins and drugs.

Materials and methods
Proposed model overview
The schematic diagram of the presented framework 
method is shown in Fig.  1. Initially, the drug structures 
(SMILE format) and protein sequences (FASTA format) 
were aggregated from DrugBank databases using access 
identifiers. Various feature extraction techniques were 
applied to drug and protein sequences to generate dif-
ferent features. Features using a single row SVM and 
known interaction to predict negative samples. Ulti-
mately, the framework was trained using prediction algo-
rithms to classify the four feature sets and evaluate these 
algorithms.

Feature extraction
The drug input was represented as a Simplified Molecu-
lar Input Line Entry System, which described the struc-
ture of chemical species using short ASCII strings. Drug 
SMILE, which included full chemical structure informa-
tion, was aggregated from the DrugBank databases by its 
specific drug ID.

This article used the PyBioMed Software Toolkit [23], 
which is a responsive feature-rich python application for 
manipulating chemical structures in different file for-
mats, permitting them to be analyzed, converted, and 
stored. PyBioMed [23] can produce 18 kinds of molecu-
lar fingerprints.

In this study, the first drug feature was Morgan fin-
gerprints because it enhances the efficiency of research 
and analysis of drugs. For representing drug properties, 
the SMILE format was transformed to Morgan, where 
the molecular fingerprint pattern was a digital sequence 
of 1024 digits. The 1024-dimensional feature vector was 
derived from each pharmacological chemical structure.

The second drug features were constitutional descrip-
tors, which are the simplest and most used descriptors 
that reflect the chemical structure of a compound with-
out information regarding its molecular geometry or 
atom connection. The 30-dimensional feature vector was 
obtained from the chemical composition of a compound.

For the proteins, features that were extracted from 
the protein sequences from the FASTA format were 
collated from the DrugBank database using the PyBi-
oMed Software Toolkit [23] to derive the target features 
from the protein sequences. These features incorporate 
amino acid composition (AAC) and dipeptide compo-
sition (DC). AAC involves 20 elements, each of which 
is one of the 20 amino acids in the protein sequence. 
Dipeptide composition (DC) considers the fraction 
of every two AAC residues in the protein sequence. 
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The DP captures protein sequence order information 
in pairs, which is the main feature. DP provides 400 
features.

Negative sample prediction
In the dataset section, the number of unknown inter-
actions was 58,629,134. Then, we constructed the 
unknown interaction feature set. This is a major problem 
in storing and processing, so we tried to present a new 
proposal schema in these interactions to overcome data 
balancing.

One-class SVM is an unsupervised algorithm for 
learning the decision function of novel discovery: pre-
dicting new data as identical or distinct to the training 
package. The one-class SVM algorithm is constructed 
by assessing a probability distribution function that 
determines the distance of most data on hyperplane. A 
decision rule separates these observations by the most 
significant potential margin [36]. The computational 
complexity of the learning phase is intense because 
one-class SVM training involves a quadruple program-
ming problem. Once the decision function is defined, it 
can predict the stratified mark of new test data.

Figure  2 provides the procedure used to predict the 
negative samples using a one-class SVM classifier.

We developed an approach for predicting negative 
samples using a one-class SVM classifier. This algo-
rithm works too.

1. Determine all unknown interactions (equal to 
58,629,134 interactions).

2. Use the one-class support vector machine-learning 
algorithm for classifying the positive samples into a 
hyperplane, which is executed on 10-fold cross-val-
idation. The empirical feature set is split into train-
ing and testing feature datasets. In addition, it uses to 
predict the signed distance for unknown interaction 
from the positive hyperplane.

3. Apply the previous step in the four feature sets to 
forecast the signed distances, which are the distances 
of all samples to the separating hyperplane learned by 
the model.

4. Take the participants in these feature sets to build 
predicted negative samples equal to 32,802. Then, we 
sort these samples to get the less signed distance for 
predicted negative samples.

Fig. 1 The proposed framework model: A) is the overall prediction framework, 1) is the feature extraction and preprocessing stage for the DTI 
dataset, 2) is the prediction of negative samples stage, and 3) is the application of the prediction algorithms stage
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Finally, we constructed the feature sets from the table 
using the positive and negative interactions (39,866 interac-
tions). The pseudocode for this algorithm is shown in Fig. 2.

Prediction approaches
Our previous work [15] demonstrated that the ensemble 
learning-based algorithms for DTI predictions are most 
accurate for predicting drug–target interactions. These 
ensemble-learning algorithms were employed in this 
paper and were compared with other machine-learning 
algorithms.

Five different prediction algorithms were used: RF, 
AdaBoost, XGBoost, Light Boost, and SVM. Drug–target 
feature sets were roughly separated into ten subgroups 
by a 10-fold CV validation test. One of the ten groups 
was selected as a test group, the remaining nine were 
considered a training group, and this operation (cross-
validation) was repeated 10 times. After calculating the 
average of the 10 verification results, the results were cre-
ated from the drug–target datasets using deferent types 
of prediction algorithms.

a) Support vector machine (SVM)

SVM is an honorable machine-learning method that 
can be used for concurrent prediction and regression 
problems. The prediction is performed by identify-
ing the plane that characterizes the most for each cat-
egory of data. In this method, SVM parameters are 
{reg_p = 1.0, kn = ‘rbf,’ gama = ‘scale’}.

The parameters are as follows:

• reg_p: It is the regularization parameter.
• kn: It specifies the kernel type to be used in the 

algorithm. The default value is “RBF.”
• gama: It is the kernel factor

b) Random Forest (RF)

RF is an ensemble-learning technique for prediction. 
RF works well for a wide scale of data elements from 
a single decision tree. In addition, a precision RF algo-
rithm can be maintained even with a large percent-
age of data missing. The parameters of this technique 
are {max feature = 0.3, min samples split = 16, num of 
estimators = 115}.

Fig. 2 The pseudocode to predict negative samples using a one‑class SVM classifier
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The parameters are as follows:

• max feature is the max number of random most 
fore features considers splitting a node.

• min samples split is the minimum number of leaves 
required to split an internal node.

• num of estimators are several trees that the algorithm 
builds before taking the maximum voting or taking the 
averages of predictions.

a) AdaBoost

Adaptive Boosting is the weights redistributed to 
each condition, with the highest weights assigned to 
incorrectly ranked cases. Adaptive Boosting is a good 
ensemble technique widely used for concurrent predic-
tion and regression problems. The parameters used in 
this method are {splitter = ‘best,’ max depth = 6, min 
samples split = 2, algorithm = “SAMME,” number of 
estimators = 90}.

The parameters are as follows:

• min samples split is the minimum number of leaves 
required to split an internal node.

• num of estimators are several trees that the algorithm 
builds before taking the maximum voting or taking the 
averages of predictions.

Algorithm: use the SAMME discrete boosting algorithm.
Splitter: strategy used to choose the split at each node.
Max depth: the max depth of the tree.

b) XGBoost

XGBoost optimizes the ensemble model depending 
on gradient tree boosting, which is widely used in pre-
diction tasks. The parameters used in this method were 
{max_depth equal to 5, learning_rate equal to 0.2612, 
n_estimators equal to int (75.5942), reg_alpha equal to 
0.9925, thread equal to − 1, objective equal to ‘binary: 
logistic’}.

iii) Light Boost

Light Boost is a fast, high-performance unitary tech-
nique that uses distribution technique like the deci-
sion tree algorithm. The parameters used in this method 
were learning rate = [0.001, 0.01, 0.1, 0.2, 0.3], momen-
tum number = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9], optimizer 
method = SGD, objective = binary, and boosting = gradi-
ent boosting.

Evaluation parameters
The different measures used for drug–target interaction 
prediction for evaluating and comparing different tech-
niques are [15] as follows:

where TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative.

The area under the curve:
The receiver operating characteristic (ROC) curve dis-

plays the performance of the forecaster with different 
threshold values.

Mean squared error (MSE)
MSE calculates the average of the squares of the errors.

Results and discussion
In this section, we underline the effective results of 
our DTI prediction model that implements the four 
feature sets. Each technique is applied in python 
language by sci-kit-learn, ensemble package, Kares 
library, TensorFlow library, and XGBoost package 
(version 3.8). The algorithms were sped up using Win-
dows 10 with a 3.10 GHz Intel core i9 processor and 
64.0 GB RAM.

Dataset
The empirical drugs and targeted datasets were aggre-
gated from the DrugBank [5] database. The DrugBank 
database includes SMILE chemical structures and 
FASTA sequences with certified, experiential, nutra-
ceutical, biotech, and withdrawn version (Group) drug 

Accuracy = TP + TN

(TP + TN + FP + FN )
,

Precision = TP

(TP + FP)
,

Recall = TP

(TP + FN )
,

F1 Score = 2 ∗ (Recall ∗ Precision)
(Recall + Precision)

,

mcc = TP ∗ TN − FP ∗ FN√
(TP + FN ) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN + FN )

,

MSE = 1

n

n

i=1

Yi − Ŷi
2

.
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and protein packages. Our study’s approved version 
of drugs, targets, and interactions of experimental 
datasets is on the recent release of DrugBank Online 
(version 5.1.8, released 2021-01-03). Our datasets 
consist of 11,150 drugs and 5260 protein targets with 
58,649,000 potential interactions, with just 19,866 
interactions noted as positive interactions  as shown in 
Table  2. Thus, the number of positive interactions is 
much lower than that of the potentially negative inter-
actions. The number of unknown interactions is equal 
to 58,629,134, causing an imbalance in the datasets. 
For this reason, we presented a method for predict-
ing the negative samples to dominate the imbalance 
between positive and negative interactive datasets. 
The DrugBank dataset statistics are presented in the 
DrugBank database.

We applied these datasets to feature generation pro-
cesses and extracted the features. These features com-
bined the four feature sets of the interaction between the 
drug and protein. The different combinations of these 
feature sets are shown in Table 3.

Now, we have five feature sets with a different number 
of features.

The results for negative sample prediction
SVM one-class learning requires the selection of the 
kernel and the stable coefficient to define the boundary. 
An RBF kernel is usually chosen even though there is no 
exact formula or algorithm for determining the band-
width factor. The second important parameter in SVM 

one-class learning is a nu parameter, known as the one-
order SVM margin, which corresponds to the possibility 
of finding a new, but regular, observable out-of-bounds 
nu that is equal to 0.01.

First, in the one-class SVM, training with positive 
samples to construct the hyperplane in all positive sam-
ples (positive hyperplane) occurs. Then, using the deci-
sion function in this method, determine the distances 
between the unknown interactions and the positive 
hyperplane. Next, apply this function in four feature 
sets. Second, determine the highest negative value of the 
distances, which indicates the highest outliers from the 
positive hyperplane. The evaluation results are shown in 
Table 4.

Table 2 DrugBank dataset statistics

Drug Protein Positive interaction

11150 5260 19866

Table 3 Four feature sets of the drug–target interaction

Feature set Drug feature Protein feature Number 
of 
features

Feature set [1] Morgan fingerprint Amino acid  
composition

1044

Feature set [2] Morgan fingerprint Dipeptide composition 1424

Feature set [3] constitution Amino acid  
composition

50

Feature set [4] constitution Dipeptide composition 430

All feature set Morgan fingerprint
+ constitution

Amino acid  
composition
+ Dipeptide  
composition

1474

Table 4 Evaluation results of negative sample prediction using 
one‑class SVM

Method Precision Recall F-score Accuracy

One‑class SVM 1 0.989 0.995 0.989

Table 5 Evaluation results of feature sets of the drug–target 
interaction using machine and ensemble algorithms according 
to precision, recall, F‑score, and accuracy

Feature set Prediction 
algorithms

Precision Recall F-score Accuracy

Feature set [1] SVM 0.995 0.995 0.995 0.996

RF 0.9996 0.9996 0.9996 0.9997

AB 0.9998 0.9998 0.9998 0.9999
XG 0.9994 0.9995 0.9995 0.9996

Light 0.9997 0.9997 0.9997 0.9998

Feature set [2] SVM 0.9992 0.9992 0.9992 0.9991

RF 0.9996 0.9996 0.9996 0.9996

AB 0.9998 0.9998 0.9998 0.9998
XG 0.9995 0.9995 0.9995 0.9996

Light 0.9996 0.9996 0.9996 0.9997

Feature set [3] SVM 0.992 0.992 0.992 0.992

RF 0.9993 0.9993 0.9993 0.9992
AB 0.9993 0.9993 0.9993 0.999
XG 0.999 0.999 0.999 0.9988

Light 0.9989 0.9989 0.9989 0.9987

Feature set [4] SVM 0.951 0.948 0.948 0.942

RF 0.999 0.999 0.999 0.9989
AB 0.9992 0.9992 0.9992 0.9989
XG 0.999 0.999 0.999 0.9987

Light 0.9988 0.9988 0.9988 0.998

All Feature set SVM 0.993 0.993 0.993 0.994

RF 0.9992 0.9992 0.9992 0.9993
AB 0.9993 0.9993 0.9993 0.9993
XG 0.998 0.998 0.998 0.998

Light 0.9991 0.9991 0.9991 0.999
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The prediction algorithm results
The results in Table 5 record the accuracy, mean square 
error, MCC, and F-score obtained by different tech-
niques. Using feature set [1], the highest accuracy score 
value of 0.9999 is achieved by AdaBoost ensemble learn-
ing, and Light Boost obtained the second best value of 
0.9998.

For feature set [2], the highest precision score value, 
best recall value, highest F-score value, and highest accu-
racy score value of 0.9998 were achieved by AdaBoost 
ensemble learning and Random Forest. Light Boost 
obtained the second highest value of 0.9996.

For feature set [3], the best precision score value, best 
recall value, best F-score value, and highest accuracy 
score value of 0.9993 were obtained by AdaBoost ensem-
ble learning and Random Forest. XGBoost obtained the 
second highest value of 0.999.

For feature set [4], the best precision score value, best 
recall value, best F-score value, and highest accuracy 
score value of 0.999 were obtained by AdaBoost ensem-
ble learning and Random Forest. SVM obtained the worst 
value for prediction.

For all feature sets, the best precision score value, best 
recall value, best F-score value, and highest accuracy 
score value of 0.9993 are obtained by AdaBoost ensem-
ble learning and Random Forest, and SVM obtained the 
worst value for prediction.

From the previous results, it was found that feature sets 
1 and 2 gave better results than the others because they 
contained a representation of drugs using Morgan’s fin-
gerprint. This gives support that Morgan’s fingerprint is 
a better representation of drugs than the other features 
used. When all features were used, we found a decrease 
in the results, which means that some features do not 
give a good description of drugs and proteins. In drug 
features found constitutional descriptors achieve the 
worst results in DTIs prediction.

The results are in Table  6. record area under the 
curve (AUC), mean square error, and MCC achieved 
by different techniques. Using feature set [1], the high-
est AUC value of 0.9998 was obtained by AdaBoost 
ensemble learning, and Light Boost obtained the sec-
ond best value of 0.9997. The best MCC value of 0.9996 
was obtained by AdaBoost and Light Boost ensemble 
learning.

For feature set [2], the best AUC value and best MCC 
value of 0.9998 and 0.9997, respectively, were obtained by 
AdaBoost ensemble learning. Random Forest and Light 
Boost obtained the second highest value of 0.9996.

For feature set [3], the best AUC value and best MCC 
of 0.9993 and 0.9986, respectively, were obtained by 

AdaBoost ensemble learning and Random Forest. 
XGBoost obtained the second highest value of 0.999.

For feature set [4], the best AUC value and best MCC 
value of 0.999 and 0.998, respectively, were obtained 
by AdaBoost ensemble learning, Random Forest, and 
XGBoost. AdaBoost ensemble learning also obtained the 
least mean square error for prediction.

For the all feature set, the best AUC value and best 
MCC value of 0.9993 and 0.999, respectively, were 
obtained by AdaBoost ensemble learning. In addition, 
AdaBoost ensemble learning provided the least mean 
square error for prediction.

The AUC is computed depending on every model’s 
AUC curve for describing the quality of work, which 
offers the most accurate visual explanation for predict-
ing DTIs.

Figure  3 shows the ROC curve and value of AUC 
for the learning techniques. Using feature set  (1), the 
best AUC value of 0.9998 was obtained by AdaBoost 
ensemble learning. For feature set  (2), the best AUC 

Table 6 Record area under the curve (AUC), mean square error, 
and MCC are achieved by different techniques

Feature set Prediction 
algorithms

AUC Mean square error MCC

Feature set [1] SVM 0.9954 0.0047 0.99

RF 0.9996 0.00038 0.9993

AB 0.9998 0.00023 0.9996
XG 0.9995 0.0005 0.9991

Light 0.9997 0.0003 0.9996
Feature set [2] SVM 0.981 0.0008 0.998

RF 0.9996 0.00035 0.9993

AB 0.9998 0.00015 0.9997
XG 0.9995 0.0004 0.9994

Light 0.9996 0.0004 0.9991

Feature set [3] SVM 0.976 0.0082 0.984

RF 0.9993 0.0007 0.9986
AB 0.9993 0.0007 0.9986
XG 0.999 0.0009 0.9982

Light 0.9989 0.001 0.9979

Feature set [4] SVM 0.949 0.051 0.8997

RF 0.999 0.0009 0.998
AB 0.9992 0.0008 0.998
XG 0.999 0.0009 0.998
Light 0.9988 0.001 0.997

All feature sets SVM 0.993 0.007 0.986

RF 0.9992 0.0008 0.999

AB 0.9993 0.00067 0.999
XG 0.998 0.0018 0.996

Light 0.9991 0.00085 0.998
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value and best MCC value of 0.9998 were obtained by 
AdaBoost ensemble learning.  Figure 4 shows the ROC 
curve and value of AUC for the learning techniques.  
For feature set  (3), the best AUC value of 0.9993 was 
obtained by AdaBoost ensemble learning and Random 
Forest. For feature set  (4), the best AUC value of 0.999 
was obtained by AdaBoost ensemble learning.   Fig-
ure 5 shows the results of the ROC curve and the value 
of the AUC for the learning techniques. The AdaBoost 
method predicted the max score in the AUC = 0.9993 
for all feature sets

The best results were obtained with the classifier 
because one of the defects of the classifier is that it 
is sensitive to outlier samples. This indicates that 
a very large proportion of the outlier samples had 
been removed to give the best using our methods in 

predicting negative samples using a one-class SVM 
classifier.

Feature analysis
Feature importance
In the study, we applied machine learning to discover the 
important features from different types of features that 
are used. The genetic algorithm [37] and XGBoost are the 
methods chosen because they obtain the highest perfor-
mance compared to other methods.

Figure 6 shows the number of correctly classified samples 
in different learning techniques. Using Random Forest, the 
best number of correctly classified samples is obtained by 
the genetic method in feature set [2] and feature set [3]. For 
AdaBoost, the best number of correctly classified samples 

Fig. 3 The results for the ROC curve and the value of AUC for the learning techniques show that the AdaBoost method predicts the max score in 
the AUC = 0.9998 for feature set [1] and set [2]

Fig. 4 The results of the ROC curve and the AUC value for the AdaBoost and Random Forest learning methods, which predicted the max AUC as 
0.9993 for feature set [3]. In feature set [4], the AdaBoost method predicted the max score in the AUC = 0.9992
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is obtained by XGBoost ensemble learning in feature set 
[1], feature set [3], and all feature set.

Undersampling and oversampling methods
In our study, we applied under sampling and oversam-
pling methods for comparison with the proposed model 
that used the random under sampling technique for 
under sampling methods [38] and the SMOTE technique 
for the oversampling method [38].

Our approach exceeded all other under sampling and 
oversampling methods because we relied on predictions 
of negative samples by assessing a probability distribu-
tion function in one-class SVM.

Figure  7 shows that our approach exceeded the best 
performance in different learning techniques. Using Ran-
dom Forest and AdaBoost, in feature set [3]. Finally, we 
calculated the bias of the roads, and the average value 
was 0.249.

Comparison with the latest methods
Our framework was compared with four methods [30–33], 
and the results are shown in Fig. 8. Our approach outper-
formed all others by achieving the highest performance 
across the DrugBank, especially in feature set [2]. As shown 
in Fig. 8, our framework (highest average accuracy = 0.9997) 
has a 2.74% higher average accuracy than the model in [32], 
10.98% higher average precision than the model in [31], and 
1.14, 3.53, and 4.54% higher average in AUC, F-score, and 
MCC, respectively, than the model in [32].

Our model obtained the best results [31, 32] because we 
operated a one-class SVM to determine the negative and 
positive samples, which gave better results than using the 

clustering algorithm in [32]. In addition, we used it at the 
prediction stage, and we have proven in previous research 
that ensemble learning obtained the best performance.

Conclusion
Our study presented a new computational frame-
work for predicting DTIs using the DrugBank dataset. 
There are two critical challenges in this field: 1) the 
vast amount of drug and target interactions that create 
a wide area of research and 2) the imbalanced dataset 
for DTIs because there are very few DTIs that have been 
detected so far. For this reason, the size of the negative 
samples is considerably larger than that of the positive 
sample. The contributions of this paper are the determi-
nation of negative samples for effective prediction and 
the study of the effectiveness of chemical and physical 
features in the evaluation and discovery of the drug–
target interactions.

We have discovered that the process of predicting neg-
ative samples using one-class SVM may be the best in 
selecting negative samples found in all samples that have 
not yet been detected. In addition, we have discovered 
that features, such as Morgan fingerprint and dipeptide 
composition, in feature set 2 are the best in a charac-
terization process. The performance of the presented 
method in the prediction stage is largely accurate in DTI 
prediction, especially when comparing various predic-
tions. The presented method showed strength and stabil-
ity in DTI prediction.

We have faced the problem of time and processing 
power while detecting drug–target interactions. We have 
overcome the lack of processing power using a computer 

Fig. 5 The results of the ROC curve and the value of the AUC for the learning techniques. The AdaBoost method predicted the max score in the 
AUC = 0.9993 for all feature sets
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Fig. 6 The results when applying the feature important stage before the classifier showed that the XGBoost method obtained the highest score for 
feature set [2] in the Random Forest classifier whereas the genetic method obtained the highest score in feature set [1] in the AdaBoost classifier
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device with special specifications to complete the work, 
but we still have the problem of time. We suggest using 
reconstruction methods whole reconfiguring data to 
improve the performance of lower quality data.

Acknowledgements
The authors would like to thank to anonymous reviewers and editor for their 
insightful comments.

Authors’ contributions
Heba El‑Behery: Conceptualization, Methodology, Software, Validation, Formal 
analysis, Investigation, Resources, Data Curation, Writing ‑ Original, Writing ‑ 
Review & Editing, and Visualization. Abdel‑Fattah Attia: Review & Editing. Nawal 
El‑Fishawy: Conceptualization, Supervision, and Review & Editing. Hanaa Torkey: 
Conceptualization, Methodology, Software, Validation, Formal analysis, Investiga‑
tion, Resources, Data Curation, Writing ‑ Original, Writing ‑Review & Editing, 
and Visualization. All authors reviewed the manuscript. The author(s) read and 
approved the final manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB).

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
There are no conflicts of interest to declare.

Fig. 7 The results when applying the feature analysis stage using the random under sampling and SMOTE oversampling method in feature set [3] 
and using the Random Forest and AdaBoost obtained the highest performance in all feature analyses

Fig. 8 The comparison between related works and the proposed work (feature set [2])



Page 14 of 14El‑Behery et al. Journal of Biological Engineering           (2022) 16:21 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Author details
1 Department of Computer Science and Engineering, Faculty of Engineering, 
Kafrelsheikh University, Kafr_El_Sheikh, Egypt. 2 Computer Science & Engineer‑
ing Department, Faculty of Electronic Engineering, Menoufia University, 
Menouf, Egypt. 

Received: 2 February 2022   Accepted: 2 June 2022

References
 1. Núñez S, Venhorst J, Kruse CG. Target–drug interactions: first princi‑

ples and their application to drug discovery. Drug discovery today. 
2012;17(1–2):10–22.

 2. Karine Vuignier JS, Veuthey JL, Carrupt PA, Martel S. Drug–protein 
binding: a critical review of analytical tools. Anal Bioanal Chem. 
2010;398:53–66.

 3. Li Q, Lai L. Prediction of potential drug targets based on simple sequence 
properties. BMC Bioinformatics. 2007;8:353.

 4. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration 
and interpretation of large‑scale molecular data sets. Nucleic Acids Res. 
2012;40(D1):D109–14.

 5. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 
5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 
2018;46(D1):D1074–82.

 6. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. 
The ChEMBL bioactivity database: an update. Nucleic Acids Res. 
2014;42(D1):D1083–90.

 7. Kuhn M, Szklarczyk D, Pletscher‑Frankild S, Blicher TH, Von Mering C, 
Jensen LJ, et al. STITCH 4: integration of protein–chemical interactions 
with user data. Nucleic Acids Res. 2014;42(D1):D401–7.

 8. Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, et al. Update of TTD: therapeutic 
target database. Nucleic Acids Res. 2010;38(suppl_1):D787–91.

 9. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of 
drug‑target interaction networks from the integration of chemical and 
genomic spaces. Bioinformatics. 2008;24(13):i232–40.

 10. Gönen M. Predicting drug‑target interactions from chemical and 
genomic kernels using Bayesian matrix factorization. Bioinformatics. 
2012;28(18):2304–10.

 11. Wang W, Yang S, Li JING. Drug target predictions based on heterogene‑
ous graph inference. In Biocomputing. 2013. pp. 53–64.

 12. Bleakley K, Yamanishi Y. Supervised prediction of drug‑target interactions 
using bipartite local models. Bioinformatics. 2009;25(18):2397–403.

 13. Alaimo S, Pulvirenti A, Giugno R, Ferro A. Drug‑target interaction predic‑
tion through domain‑tuned network‑based inference. Bioinformatics. 
2013;29(16):2004–8.

 14. Chen X, Liu MX, Yan GY. Drug‑target interaction prediction by random 
walk on the heterogeneous network. Mol Biosyst. 2012;8(7):1970–8.

 15. El‑Behery H, Attia AF, El‑Fishawy N, Torkey H. Efficient machine learning 
model for predicting drug‑target interactions with case study for Covid‑
19. Comput Biol Chem. 2021;93:107536.

 16. Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, et al. Deep‑learn‑
ing‑based drug‑target interaction prediction. J Proteome Res. 
2017;16(4):1401–9.

 17. Xiao X, Min JL, Wang P, Chou KC. iCDI‑PseFpt: identify the channel‑drug 
interaction in cellular networking with PseAAC and molecular finger‑
prints. J Theor Biol. 2013;337:71–9.

 18. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction 
ofdrug‑target interaction networks from the integration of chemical and 
genomicspaces. Bioinformatics. 2008;24(13):i232‑40.

 19. Mousavian Z, Khakabimamaghani S, Kavousi K, Masoudi‑Nejad A. Drug‑
target interaction prediction from PSSM based evolutionary information. 
J Pharmacol Toxicol Methods. 2016;78:42–51.

 20. Zhan X, ZHYM, IEEE, Cai J, LI L, YU C, Jie Pan AJK. Prediction of Drug‑Target 
Interactions by Ensemble Learning Method from Protein Sequence and 
Drug Fingerprint. IEEE ACCESS. 2020;8:12.

 21. Landrum G, Kelley B, Tosco P, sriniker, gedeck, NadineSchneider, et al. 
rdkit/rdkit: 2018_03_1 (Q1 2018) Release. 2018. https:// doi. org/ 10. 5281/ 
zenodo. 12220 70.

 22. Xiao N, Dong‑Sheng C, Qing‑Song X. Package ‘Rcpi’. 2018.

 23. Dong J, Yao ZJ, Zhang L, Luo F, Lin Q, Lu AP, et al. PyBioMed: a python 
library for various molecular representations of chemicals, proteins and 
DNAs and their interactions. J Cheminform. 2018;10(1):16.

 24. Chen T, CG. XGBoost: A Scalable Tree Boosting System. 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016;22.

 25. Wang Y‑C, Yang Z‑X, Wang Y, Deng N‑Y. Computationally probing drug‑
protein interactions via support vector machine. Lett Drug Des Discov. 
2010;7(5):370–8.

 26. Cereto‑Massague A, Ojeda MJ, Valls C, Mulero M, Garcia‑Vallve S, Pujadas 
G. Molecular fingerprint similarity search in virtual screening. Methods. 
2015;71:58–63.

 27. Andrea Mauri, V.C., and Roberto Todeschini, Molecular Descriptors. In 
book: Handbook of Computational Chemistry. 2017. pp. 2065‑2093.

 28. Ding Y, Cai Y, Zhang G, Xu W. The influence of dipeptide composition on 
protein thermostability. FEBS Lett. 2004;569(1–3):284–8.

 29. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a 
protein and its dipeptide composition: a novel approach for predicting 
in vivo stability of a protein from its primary sequence. Protein Eng. 
1990;4(2):155–61.

 30. Islam SM, Hossain SMM, Ray S. DTI‑SNNFRA: Drug‑target interaction 
prediction by shared nearest neighbors and fuzzy‑rough approximation. 
PLoS One. 2021;16(2):e0246920.

 31. Lee I, Keum J, Nam H. DeepConv‑DTI: Prediction of drug‑target interac‑
tions via deep learning with convolution on protein sequences. PLoS 
Comput Biol. 2019;15(6):e1007129.

 32. Mahmud SH, Chen W, Jahan H, Liu Y, Hasan SM. Dimensionality reduction 
based multi‑kernel framework for drug‑target interaction prediction. 
Chemom Intell Lab Syst. 2021;212:13.

 33. Mahmud SMH, Chen W, Liu Y, Awal MA, Ahmed K, Rahman MH. 
PreDTIs: prediction of drug‑target interactions based on multi‑
ple feature information using gradient boosting framework with 
data balancing and feature selection techniques. Brief Bioinform. 
2021;22(5):bbab046.

 34. Wang C, Wang W, Lu K, Zhang J, Chen P, Wang B. Predicting Drug‑Target 
Interactions with Electrotopological State Fingerprints and Amphiphilic 
Pseudo Amino Acid Composition. Int J Mol Sci. 2020;21(16).

 35. Ji BY, You ZH, Jiang HJ, Guo ZH, Zheng K. Prediction of drug‑target 
interactions from multi‑molecular network based on LINE network repre‑
sentation method. J Transl Med. 2020;18(1):347.

 36. Keum J, Nam H. SELF‑BLM: prediction of drug‑target interactions via self‑
training SVM. PLoS One. 2017;12(2):e017183.

 37. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, 
present, and future. Multimed Tools Appl. 2021;80(5):8091–126.

 38. Mohammed R, Rawashdeh J, Abdullah M. Machine learning with over‑
sampling and undersampling techniques: overview study and experi‑
mental results. In 2020 11th international conference on information and 
communication systems (ICICS). 2020. pp. 243‑248. IEEE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.5281/zenodo.1222070
https://doi.org/10.5281/zenodo.1222070

	An ensemble-based drug–target interaction prediction approach using multiple feature information with data balancing
	Abstract 
	Background: 
	Methods: 
	Results: 

	Introduction
	Related work
	Materials and methods
	Proposed model overview
	Feature extraction
	Negative sample prediction
	Prediction approaches


	Evaluation parameters
	Mean squared error (MSE)

	Results and discussion
	Dataset
	The results for negative sample prediction
	The prediction algorithm results
	Feature analysis
	Feature importance
	Undersampling and oversampling methods


	Comparison with the latest methods
	Conclusion
	Acknowledgements
	References


