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Abstract
Background: Feed-forward motifs are important functional modules in biological and other
complex networks. The functionality of feed-forward motifs and other network motifs is largely
dictated by the connectivity of the individual network components. While studies on the dynamics
of motifs and networks are usually devoted to the temporal or spatial description of processes, this
study focuses on the relationship between the specific architecture and the overall rate of the
processes of the feed-forward family of motifs, including double and triple feed-forward loops. The
search for the most efficient network architecture could be of particular interest for regulatory or
signaling pathways in biology, as well as in computational and communication systems.

Results: Feed-forward motif dynamics were studied using cellular automata and compared with
differential equation modeling. The number of cellular automata iterations needed for a 100%
conversion of a substrate into a target product was used as an inverse measure of the
transformation rate. Several basic topological patterns were identified that order the specific feed-
forward constructions according to the rate of dynamics they enable. At the same number of
network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher
network efficacy than single feed-forward motifs. Additionally, a topological property of
isodynamicity was identified for feed-forward motifs where different network architectures
resulted in the same overall rate of the target production.

Conclusion: It was shown for classes of structural motifs with feed-forward architecture that
network topology affects the overall rate of a process in a quantitatively predictable manner. These
fundamental results can be used as a basis for simulating larger networks as combinations of smaller
network modules with implications on studying synthetic gene circuits, small regulatory systems,
and eventually dynamic whole-cell models.

Background
Modeling is a means of making predictions and testing
our understanding. In some sense, our level of under-

standing of an entity can be measured by how well we can
model that entity [1]. In particular, mathematical mode-
ling has been applied to diverse areas of science [2],
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including chemistry [3] and biology [4-6]. The quantita-
tive nature of mathematical modeling has the benefit of
yielding detailed, objective descriptions and predictions
of processes. An accurate mathematical model can help
clarify the roles of individual components within a proc-
ess and generate specific, testable hypotheses and predic-
tions. The quantitative results of a mathematical model
also provide an objective basis for evaluating the accuracy
of a model when compared to experimental results and
can enable iterative improvement of a model [7,8].

One of the main benefits of quantitative modeling and
analysis is the ability to identify emergent, general proper-
ties. An example of this is that complex networks from the
internet to biological metabolism have been found to
organizationally function and expand as scale-free net-
works [9]. Within the scale-free framework, genes, pro-
teins, and metabolites are further organized into
functional modules with specific structural motifs [10].
Motifs are defined in terms of graph theory [11,12] as sim-
ple connected subgraphs, the abundance of which in a
given network is very different from a random graph hav-
ing the same number of vertices and edges.

One of the most prevalent topological motifs is the feed-
forward (FF) loop. Feed-forward loops have been studied
in biological systems and have been found to be involved
in a number of different processes including regulatory
mechanisms [13] and cell differentiation [14]. Transcrip-
tional regulation is found in most organisms and the
dynamics of feed-forward motifs in gene regulatory net-
works has modeled in detail by Alon and co-workers [15-
19] to successfully reproduce basic temporal dependen-
cies. Detailed characterization of specific topological
motifs should lead to new analyses such as predicting
gene regulatory patterns resulting from the aggregation of
different topological motifs [20,21]. The mechanism of
feed-forward control in the transcriptional network that
promotes cell growth was recently elucidated by Palomero
et al. [22] and inhibitory feed-forward effects in neural cir-
cuits have been studied by Klyachko and Stevens [23].
Cordero and Hogeweg [24] have shown that gene evolu-
tion depends on the topology of gene regulatory net-
works. A recent review [25] analyzed the relation between
structural modules and dynamics of cellular networks, as
a basis for engineering cells to produce desired properties.
More abstractly, studies relating topology to function can
lead to better understanding of biological network
dynamics such as robust dynamical stability [26] and
motif specific spatio-temporal dynamics [27,28]. All of
these examples illustrate the connection between biologi-
cal function and the topology of biological networks.

The present study focuses on the qualitative and quantita-
tive characterization of a variety of feed-forward motifs

with different architecture, and the relationship between
topology and overall process rate in feed-forward loops. A
variety of stochastic simulation methods exist that can be
used to model networks dynamics [29-32]. In our study,
cellular automata [33] were selected as a promising
method for dynamic modeling of all possible topologies
of feed-forward loops due to its flexibility, robustness and
accuracy. Widely applied in a variety of areas of science
and technology, the cellular automata method recently
showed great promise for modeling dynamics of complex
biological systems [34-38]. In modeling biochemical
processes, we followed the general method used by Kier
and Cheng [39,40]. Specifically, this study is focused on
studying the purely topological effects on motif produc-
tivity. Thus, the cellular automata simulations were con-
ducted in a manner so as to keep all probabilistic
parameters constant. This effectively "freezes" the process
stochasticity, making our simulations de facto non-sto-
chastic. Results of cellular automata topodynamic pattern
simulations were verified with those obtained by parallel
ODE and non-linear differential equations simulations.

Methods
Cellular automata modeling of biochemical networks
Cellular automata (CA) are modeling tools that represent
dynamic systems discretely in space, time, and state. The
overall system behavior is specified entirely by rules gov-
erning local relationships. In the most common 2D-ver-
sion, CA models are constructed on a grid of squares
called cells. The grid size may vary considerably, depend-
ing on the system. To eliminate any boundary effects, the
grid is usually built on the surface of a torus. In our study
we used lattices within the range of 100 × 100 to 220 ×
220 (fide infra). The following rules were employed (See
Fig. 1 for an illustration of the most essential probabilistic
rules):

• Space and time are discrete: There is a two-dimensional
toroidal grid of cells that is viewed at subsequent equidis-
tant time steps.

• At each time step, each cell has a single state – empty or
occupied. The cell may be occupied by an enzyme, a sub-
strate, a product, a substrate/enzyme complex or a prod-
uct/enzyme complex.

• The state of a cell at a given time step depends only on
its own state and the cell states in its neighborhood, all
taken at the previous step.

• Each cell has four sites (von Neumann neighborhood),
on which interactions can be simulated.

• The contents of a cell may break away from an occupied
cell or move to join a cell that is occupied. The probabili-
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ties for moving, PM, joining, PJ (XX) and PJ (XY), and
breaking away, PB(XX) and PB(XY), are PM = PJ = PB = 1.
This means that all cells may move, join, and break apart
with equal probability.

• The overall probability of a movement, PM = 1, is divided
into probabilities for movements onto k grid directions,
where k = 1–4 is the number of unoccupied neighboring
cells.

• The only joining of two cells that has a consequence is
that between the specific substrate S(i) and the specific
enzyme E(i). When such an encounter occurs, a substrate-
enzyme complex (SE(i)) is formed. This complex has an
assigned transitional probability, PT = 0.5, of changing to
a new product-enzyme complex PE(i).

In such reactions, the transitional probability is regarded
as a measure of enzyme activity or propensity, and may be
varied within the entire range of values between 0 and 1.
In this study, PT was uniformly assumed to be 0.5 to allow
reversibility of the first reaction step and to isolate the
purely topological effects on motif productivity. By
assuming the movement, joining and breaking probabili-
ties are all equal to 1, and by fixing the only essential
probabilistic parameter, transitional probability, to a con-

stant value (0.5), we "freeze" the model stochasticity, and
have de facto a non-stochastic CA modeling.

The rules, applied at random to all cells, represent one
iteration of the modeling procedure, which determines
the cells new states and trajectories. A cell and its four-cell
environment can acquire any of the five states defined
above. The initial state of the system is random and, thus,
does not determine subsequent configurations at any iter-
ation. After many iterations, the system reaches a rela-
tively constant configuration (analogous to a chemical
steady state), characterized by counts of cells. The model
is statistical; many runs are performed, and the number of
iterations needed to attain a steady-state is averaged. The
specific CA parameters: number of runs, number of cells
for different species, grid density, and percent of conver-
sion of the source substrate into the target product were
optimized, as discussed in RESULTS.

Differential equations modeling of networks
Ordinary differential equations (ODEs) were used to
model select topological motifs to compare with results
from CA simulations. The simplest way to construct such
an ODE model is to treat each feed-forward link A→B
without regard to the underlying biochemical processes
(e.g., formation of substrate-enzyme complexes and sub-
sequent dissociation of the complexes). In doing so, we
neglect any nonlinear interactions of various species. Each

S i E i SE i PE i P i E i
PT

( ) ( ) ( ) ( ) ( ) ( )+ ↔ → → + (1)

A scheme illustrating the rules that control the dynamics of the enzymatic reaction steps iFigure 1
A scheme illustrating the rules that control the dynamics of the enzymatic reaction steps i. Here S, P, E, SE and PE stand for 
substrate, product, enzyme, substrate/enzyme and product/enzyme, respectively. The probability of motion is 1/k, k = 1 to 4 
being the number of unoccupied neighboring cells; probability equal to 1 is postulated for S(i) and E(i) to join, as well as for PE(i) 
to disjoin. The transitional probability for the PE(i) formation is assumed equal to 0.5, which makes the first reaction step 
reversible.
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link has an associated rate constant and each vertex in the
feed-forward motif gives rise to an ODE. For the system
shown in Fig. 2, the ODEs are:

Importantly, the resulting constant-coefficient linear sys-
tems of ODEs can be solved explicitly, yielding exact for-
mulas for each state variable. In particular, the formula
describing the evolution of the target state (T) can be used
to determine how much time is needed to achieve a spec-
ified level of conversion. One may then study the effect of
network topology on the dynamics by ranking the conver-
sion times for various feed-forward motifs, starting from
the same initial conditions.

We also attempted to more carefully model the biochem-
ical processes underlying each feed-forward link in Fig. 2.
This time the biochemical processes underlying each feed-

forward link is presented in detail, tracking the amount of
each species, the amount of each enzyme, and the amount
of each substrate-enzyme complex. Thus, assuming irre-
versibility of all reaction steps, we get one ODE for each
vertex and two ODEs for each edge in the motif. Assuming
mass-action kinetics in the formation of substrate-enzyme
complexes introduces nonlinearity. The motif in Fig. 2 is
thus described by the set of equations:

and yields twelve ODEs, matching the detailed mass-
action kinetics. This system can be effectively reduced to a
system of eight ODEs, since the rate of formation of a sub-
strate-enzyme complex is the negative of the rate of
change of the enzyme concentration. An example is given
in eq 10:

where k1 through k4 and  through  denote rate con-

stants (which for extracting the topological effects on
motif productivity are assumed equal) and [E1] through

[E4] denote enzyme concentrations. Because nonlinearity

prevents solving the ODEs explicitly, they were solved
numerically by the forward Euler method with a time step
of 0.001 units. There was no need to use a more sophisti-
cated numerical method as we considered the special case
in which all rate constants are equal, and the system is not
stiff (the eigenvalues of the Jacobian matrices associated
with these systems of ODEs are (i) all negative and (ii) are
of the same order of magnitude).

We have also studied the possibility for the first "half" of
each process to be reversible. Here, one must track the
amount of (i) the four species; (ii) the four enzymes; and
(iii) the four substrate-enzyme complexes. This adds more
terms to the nonlinear system of eight ODEs, as illustrated
by the last two terms in eq.11

dS
dt

k SS= − 1 (2)

dI
dt

k S k k IS T
1

1 12 1 1= − +( ) (3)

dI
dt

k I k IT
2

12 1 2 2= − (4)

dT
dt

k I k IT T= +1 1 2 2 (5)

S E SE E Ik k+  →  → +1 1 1 1
1 1 (6)

I E I E E Ik k
1 2 1 2 2 2

2 2+  →  → + (7)

I E I E E Tk k
1 3 1 3 3

3 3+  →  → + (8)

I E I E E Tk k
2 4 2 4 4

4 4+  →  → + (9)

d I

dt
k I E k I E k SE1

2 1 2 3 1 3 1 1
[ ] = − [ ][ ] − [ ][ ] + [ ]

(10)

k1 k4

Example of a feed-forward motif with four vertices and four edges, explaining the notation used in the linear differential equationsFigure 2
Example of a feed-forward motif with four vertices and four 
edges, explaining the notation used in the linear differential 
equations. S, T and I stand for source, target and intermedi-
ate node, respectively.
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where ri stands for the rate constant of the reversed reac-
tion step i.

Results
Selection of the major CA parameters
To generate accurate and reproducible results, several
series of tests were performed to optimize the basic CA
parameters to be used before proceeding with the detailed
study on feed-forward motifs. Due to the statistical nature
of the CA modeling, a large number of simulation runs
should be performed to obtain statistically-meaningful
results. The optimal number of runs must be large enough
to provide reliable statistics, and at the same time not
excessively large so as to minimize the computation time.
We examined the influence of the number of runs on the
number of iterations needed to reach 100% conversion of
the source substrate into the target product (Table 1). The
tests were performed at different degrees of lattice occu-
pancy (termed lattice density) and with different number
of nodes (3, 6 and 9) in the feed-forward FFA series shown
in Figure 3. Results for 50 runs differed from those
obtained at 100, 250 and 1000 runs (Table 1); the latter
three were practically the same and within the range of
standard deviation observed. Therefore, 100 runs were
selected to perform the basic feed-forward modeling.

Another parameter investigated was the CA lattice density
(the number of cells per unit area). A high density can
impede the free cell motion and the results obtained in
different runs could diverge considerably. That was con-
firmed in our tests, which showed over 25-fold increase in
the standard deviation of the number of iterations when
the lattice density was increased within the series 1.0, 3.6,

5, 10, 20, 40, and 60%. On the other extreme, a very low
density (See Figure 4) would unnecessarily prolong the
time for attaining a steady state. For these reasons we
selected the 3.6% lattice density (corresponding to 100 ×
100 cells lattice with a total of 360 cells occupied by sub-
strates and enzymes) as a constant parameter for the
detailed study of the dynamics of feed-forward motifs.
This required resizing the lattice for each of the FF motifs
examined. All lattice sizes used were within the range of
100 × 100 to 220 × 220 cells.

More detailed simulations were run to quantitatively cap-
ture the manner in which the feed-forward dynamics vary
with different lattice density, D, and the number of nodes,
V, in the FFA-series. Equation (12), relating these quanti-
ties, was derived from the data of Table 1:

I = 640.5VD-1.0862 - 8.281ln(D) + 36.08 (12)

The equation derived shows considerable acceleration of
the FF processes with the increase in density in agreement
with the law of mass action, since density is proportional
to a substrate concentration modeled as number of cells
per unit lattice area.

In deriving Eq (12) we used the linear dependence of the
number of iterations on the number of FF loop nodes: I =
aV + b, which for V = 3, 6, and 9 nodes were obtained with
correlation coefficient R2 = 0.9961, 0.9988, and 0.9998,
respectively. The regressions best expressing the depend-
ence of a and b on the lattice density D were

a = 640.5D-1.0862 and b = -8.281ln(D) + 36.08
(13)

with R2 equal to 1.0000 and 0.9901, respectively.

d I

dt
k I E k I E k SE r I E r I E1

2 1 2 3 1 3 1 1 2 1 2 3 1 3
[ ] = − [ ][ ] − [ ][ ] + [ ] + [ ] + [ ]

(11)

Table 1: Cellular Automata simulation of the dynamics* of feed-forward series FFA shown in Fig. 1

Number of Nodes Lattice Density % Number of Runs SD** average SD %

50 100 250 1000

3 3.6 447 469 458 460 7 1.51
10 143 145 144 144 8 5.56
60 21 20 21 20 8 39.0

6 3.6 939 895 893 906 8 0.89
10 287 293 290 288 10 3.45
60 41 42 41 41 9 21.6

9 3.6 1430 1425 1426 1422 2 0.14
10 458 460 456 458 2 0.44
60 65 65 65 65 9 13.9

* Dynamics is expressed as the average number of iterations needed for 100% conversion of 100 source substrate cells into the target product. It is 
modeled at different number of nodes, different lattice densities, and different number of cellular automata runs.
** Standard deviation
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The last parameter to select was the number of source cells
(N). The number of cells of all other pathway constituents
was kept equal to 100 cells. The enzymes associated with
each of the biochemical reaction steps were kept equal to
20 cells. All enzyme activities were also kept equal (by

applying the same CA probabilistic rule) in order to
extract the purely topological effects on the network
dynamics Since the concentration, simulated as number
of cells per unit lattice, was kept constant, N itself should
not influence the correlation coefficient of the linear
model relating the number of nodes in the pathway to the
rate of the source-to-outcome conversion. As shown in
Table 2, while the correlation coefficient remains within
the same range, the increase in the number of source cells
in the feed-forward motif reduces the model standard
deviation at the cost of considerable increase in the
number of iterations needed to reach a steady-state. As a
reasonable compromise between a low standard devia-
tion and too many iterations, we chose to perform the
detailed study in the next section at N = 500, a parameter
value that enabled us to attain steady-state with an average
standard deviation of 0.31% for less than 10,000 itera-
tions.

Modeling seven feed-forward series having different 
topology
The feed-forward motif FFA shown in Fig. 3 may be
termed the primary feed-forward series (PFF) to be distin-
guished from some more complex variations on the same

The overall rate of the feed-forward process of the source substrate conversion into the target product in the Feed-Forward series A (FFA) decreases rapidly with lattice densityFigure 4
The overall rate of the feed-forward process of the source substrate conversion into the target product in the Feed-Forward 
series A (FFA) decreases rapidly with lattice density. The number of iterations, needed to attain a steady-state in Series 1, 2 
and 3, correspond to the number of feed-forward nodes (Fig. 3) equal to 3, 6, and 9, respectively. All data are averaged over 
100 runs simulation.

The members of the examined primary feed-forward motif series FFAFigure 3
The members of the examined primary feed-forward motif 
series FFA.
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feed-forward pattern. One may also consider double, tri-
ple, etc., FF motifs, which include secondary, tertiary, etc.
feed-forward edges. Such structural motifs with more
complex topologies may be obtained by merging two or
more primary FF motifs. This approach may be of interest
in predicting dynamic patterns in larger networks as com-
binations of well established patterns in small subnet-
works (motifs). We selected for our study several such
complex cases of feed-forward patterns of PFFs (Fig. 5).

Two versions of CA model results were compiled, 50%
conversion and 100% conversion. These two categories of
results represent the number of CA iterations needed for
50% and 100% conversion of the source substrate into the
target product. This number serves as an inverse measure
of the FF motif dynamics (the larger the number of itera-
tions needed for arriving at a steady-state, the slower the
overall process). As seen from Table 3, the linear regres-
sion models obtained for 50% conversion have lower cor-

relation coefficients (R2 = 0.9796 to 0.9980) and
considerably higher standard deviations (SD = 1.70 to
4.14%), as compared to the corresponding models with
100% conversion (R2 = 0.9990 to 0.9996 and SD = 0.25 to
0.50%). Based upon these results, the subsequent analy-
ses are based on the results obtained with 100% conver-
sion only.

Discussion
The central focus of our analyses was to study how net-
work topology affects the dynamics of processes in differ-
ent feed-forward motifs. In order to ensure that the
networks analyzed were comparable to enable the identi-
fication of stable structure-dynamics patterns, we
assumed that (i) the rate constants for all processes are
equal, (ii) the initial conditions are chosen such that the
source (S) is initially five times larger than each of the
other species, and (iii) all enzyme activities are constant
and equal. We constructed a chart containing all ten
motifs having four nodes (Fig. 6) and their mutual trans-
formations (15 additions of an edge with the formation of
a new cycle, and three link direction reversals connecting
feed-forward motifs with bi- and tri-parallel ones), and
performed both CA and ODE linear and nonlinear mode-
ling. Each network gives rise to a system of four linear
ODEs, which can be solved explicitly. In the nonlinear
case we performed numerical simulation with both irre-
versible and reversible first reaction steps. In all versions
of the ODE models the networks were ranked according
to their 90% conversion times. The numerical ODE values
stand for the time measured in arbitrary units needed for
a 90% overall conversion of the source substrate S into the
target product T.

The comparison of the efficacy of performance of the ten
four-node networks (Fig. 6) shows that CA and linear
ODE order the motifs in the same way with a minor
exception. Namely, CA ranks structures H and I with the
same highest conversion rate (2408 ± 13 and 2427 ± 15,
respectively), since the iteration numbers overlap within
the range of their standard deviations. The linear ODE
also ranks H and I as the fastest four-node topologies,
adding a third structure G, not only showing the same
conversion time 2.17, but this time T(t) is given by the
exact same formula in all three cases (eq. 17).

The nonlinear ODE models with reversible and irreversi-
ble first steps produce identical ordering of the ten struc-
tures. It coincides with the ordering of the first seven
structures, described above by CA and linear ODEs, while
suggesting that network I is the fastest, G and H having
very close performance, H shown as slightly slower than
G.

Feed-forward motifs with different network topologiesFigure 5
Feed-forward motifs with different network topologies. The 
first and the last member of the examined seven feed-for-
ward motifs series are shown only. The series include all 
structures with intermediate number of nodes (FFA series 
had networks with 3 to 9 nodes; all other series had 4–10 
nodes).

Table 2: Influence of the size of the feed-forward motif on the 
dynamics of 100% conversion of the source substrate into target 
product

N* Iterations Range R2 SD %

100 469 – 1425 0.9960 0.99
300 1603 – 4473 0.9994 0.76
500 2966 – 8444 0.9996 0.31
700 4435 – 13282 0.9989 0.28
900 6397 – 20526 0.9931 0.19

*N – Number of source nodes; R2 – correlation
coefficient; SD % – relative standard deviation
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The topological analysis of the nine networks revealed
some useful patterns of their dynamics. Although the net-
works analyzed here are relatively simple, they could be of
use when analyzing local topology in large complex net-
works. Several of the observed topodynamic patterns are
described below.

Dynamic Feed-Forward Pattern 1 (DFFP1)
The shorter the graph distance d(S→T) between the source
node and the target node in a feed-forward motif, the
higher the overall conversion rate:

A(d = 3) < B, C (d = 2) < D, E, G, H, I (d = 1)
(14)

Note, that the bi-parallel motifs F and J do not obey this
rate inequality.

Dynamic Feed-Forward Pattern 2 (DFFP2)
The shorter the average path length l(S→T) between the
source node and the target node in a feed-forward motif,
the higher the overall conversion rate:

A (l = 3) < B, C (l = 2.5) < D, E, G, H (l = 2) < I (l = 5/3)
(15)

Accounting for all S → T paths is a slightly more sensitive
pattern, which singles-out network I as the most efficient
four-node structure, in agreement with the result obtained
by the nonlinear ODE model. The bi-parallel motifs F and
J do not obey this feed-forward topodynamic trend, which
is more important in larger networks where the number of
S → T paths increases rapidly.

Dynamic Feed-Forward Pattern 3 (Isodynamicity)
Some feed-forward motifs with different topology pro-
duce the same overall S → T conversion rate by the CA and
linear ODE models:

CA: H (2408 ± 13) = I(2427 ± 15) (16a)

ODE: G = H = I = 2.169053700 (16b)

Eq. (16b) follows from the analytical solution of the lin-
ear differential equations for structures G, H, and I:

The linear ODEs also classify motifs F and J as isody-
namic, obeying the same kinetic equation:

The CA and the nonlinear ODE simulations showed these
two motifs with different, although relatively close effi-
cacy, the structure J being the slower one:

CA: J (3348 ± 18) < F (3291 ± 17) (19a)

Irreversible Nonlinear ODE: J (6.05) < F (5.54)
(19b)

Reversible Nonlinear ODE: J (9.00) < F (8.51)
(19c)

T t e t( ) = − −1
7
8

(17)

T t e et t( ) = − +− −1
3
2

5
8

2 (18)

Table 3: Linear dependence of the overall rate of feed-forward motifs on the number of motive nodes

Series N Iterations range Regression R2 SD %

FFA-50 3–9 804 – 2160 219.00 N + 227.14 0.9796 4.14
FFB-50 4–10 1735 – 3736 320.18 N + 483.46 0.9966 1.43
FFC-50 4–10 2043 – 4530 402.36 N + 481.36 0.9980 1.71
FFD-50 4–10 1375 – 3428 329.93 N + 148.50 0.9939 2.38
FFE-50 4–10 1080 – 2247 202.93 N + 258.64 0.9874 2.62
FFF-50 4–10 785 – 1574 133.36 N + 235.07 0.9981 1.70
FFG-50 4–10 1955 – 4104 365.61 N + 395.89 0.9900 2.78

FFA-100 3–9 2966 – 8444 920.75 N + 187.50 0.9996 0.31
FFB-100 4–10 4187 – 9044 800.93 N + 998.07 0.9994 0.29
FFC-100 4–10 4542 – 10565 993.71 N + 556.00 0.9990 0.25
FFD-100 4–10 3291 – 8067 802.64 N + 89.357 0.9993 0.34
FFE-100 4–10 3505 – 7599 683.57 N + 766.14 0.9994 0.33
FFF-100 4–10 2408 – 4927 418.21 N + 705.07 0.9991 0.50
FFG-100 4–10 2721 – 5086 397.61 N + 1121.8 0.9991 0.42

The overall rate is measured by the number of iterations needed for 50% and 100% conversion of the source substrate into the target product. 
Seven series (Fig. 3) of feed-forward motifs with different topology, constant number of source cells, N = 500, and constant lattice density, D = 
3.6%, are studied.
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Linear ODE: J(2.679) = F(2.679) (19d)

The property of isodynamicity is a surprising novel net-
work pattern, which could warrant further detailed stud-
ies.

Dynamic Feed-Forward Pattern 4 (DFFP4)
Any ring closure of a linear chain of conversion of a source
substrate S to the target product T accelerates the transfor-
mation. Acceleration of the process is strongest when the
feed-forward link directly connects the substrate to the tar-
get and is the smallest when the link connects the sub-
strate with an intermediate product (Figs. 7, 8).

A < B < C < D (20)

The ring-closures described by this pattern are shown in
Fig. 7 with serial numbers 1, 2, and 3. The generality of
this topology-dynamics relationship was verified for the
entire series FFA, FFB, and FFC (Fig. 5) having up to ten
motif nodes. In all cases, the standard deviation the
number of CA iterations was found to be more than two
orders of magnitude smaller than that number. This pat-
tern goes beyond the simple topological patterns 1 and 2
shown above, which cannot discriminate between FFB
and FFC series.

Dynamic Feed-Forward Pattern 5 (DFFP5)
Adding a second feed-forward edge (double feed-forward
motif), between any pair of nodes in the longer path of the

Chart of all ten four-node motifs (eight feed-forward and F – biparallel) of conversion of the source node S to target node T: A – linear, B, C, D, E, G and H – feed-forward, F and J – bi-parallel, and I – tri-parallelFigure 6
Chart of all ten four-node motifs (eight feed-forward and F – biparallel) of conversion of the source node S to target node T: 
A – linear, B, C, D, E, G and H – feed-forward, F and J – bi-parallel, and I – tri-parallel. The motifs are ordered according to 
their dynamic efficacy in producing the target product with a highest rate, assessed by decreasing number of iterations, and 
decreasing time, as produced by the linear (LDE) and nonlinear ODE models for 90% S → T conversion. The nonlinear irre-
versible and reversible ODE times are denoted by NDE and NDE', respectively. The mutual transformations of the structures 
shown include 15 additions of another feed-forward link, whereas those marked by an asterisk (D → F, E → I, and J → H 
conversions) include a reversal of a single link direction.
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FF loop, speeds up the dynamics of the source substrate
conversion into the target product (Fig. 8).

D < E < H (21)

These inequalities for the number of iterations, illustrated
in Fig. 8 with four node motifs, were verified and found
valid with no exceptions for all sizes of the three FF series
examined (four to ten loop nodes). Comparing the FFF
and FFE series, one may generalize that the acceleration of
substrate-to-target conversion is higher when the second
FF-link starts in a node located on the longer source-target
path and ends into the target node, rather than to start in
the source node and end in another node before the target

one. Since the structures of the triple-feed-forward motif
FFG (see graph G in Fig. 8) combine the CA trends of the
FFF and FFE series, the acceleration in this series is inter-
mediate between the ones of FFE and FFF. However, the
ODE models do not confirm this result with the linear
model showing G and H to be isodynamic, whereas the
two nonlinear models shows G as slightly more efficient
than H. Therefore, adding a third feed-forward link does
not necessarily result in acceleration and no stable trend
exists.

Dynamic Feed-Forward Pattern 6 (DFFP6)
Reversing the direction of one or more links in a feed-for-
ward motif to turn it into a bi-parallel and tri-parallel one
increases the network efficacy. (Figs. 6, 9).

Feed-Forward < Bi-Parallel < Tri-Parallel (22)

Three such conversions:

D < F, E < I, J < H (23)

are shown in Fig. 6, where they are denoted by asterisks.

Conclusion
The technique of dynamic modeling with cellular autom-
ata shows great promise in modeling complex biological
systems. Such systems can be broken down to subsystems
of smaller scale (to ease computational time) and simu-
lated independently so as to shed light on the processes
on a larger scale. The essential element in such applica-
tions is the extraction of useful topological-dynamic
(topodynamic) patterns, which identify specific effects of
topological structure on the dynamics of network proc-
esses while keeping all kinetic parameters constant. The
beauty of the topological approach in studies of dynamics
is in the generality of the patterns found, which are inde-
pendent on the nature of the processes, and may be

At the same number of nodes, the feed-forward motif is slower than the bi-parallel motifFigure 9
At the same number of nodes, the feed-forward motif is 
slower than the bi-parallel motif. The topology producing the 
fastest dynamics is that of the tri-parallel motif I.

Topological feed-forward transformations (1, 2, and 3) always accelerate processes described as a linear chain of eventsFigure 7
Topological feed-forward transformations (1, 2, and 3) 
always accelerate processes described as a linear chain of 
events. Different mechanisms of ring closure are shown, the 
fastest topology being the one with a direct Source → Target 
feed-forward link. The linear and nonlinear irreversible and 
reversible ODE times are denoted by LDE, NDE and NDE', 
respectively.

Adding a second feed-forward edge always accelerates the processes in a feed-forward motifFigure 8
Adding a second feed-forward edge always accelerates the 
processes in a feed-forward motif. There is no such general 
pattern for the addition of a third feed-forward link (Com-
pare E → G to H → G). The linear and nonlinear irreversi-
ble and reversible ODE times are denoted by LDE, NDE and 
NDE', respectively.
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applied to any process of chemical transformation, as well
as to any process of mass, energy or information transfer
down the forward direction of the motifs.

The dynamics of the feed forward motifs observed in this
study revealed important aspects of networks with such
components. Not only does any feed-forward link added
to a linear cascade of chemical/biochemical reactions
accelerate the process, but the acceleration is further
enhanced by adding a second forward link in the feed-for-
ward loop. The topological hierarchy established in this
study for four-node motifs predicts that the acceleration
of the overall process in such motifs continue increasing
with the decrease in the distance (both along the shortest
path and along all paths) between the input and output
nodes, whereas at the same distance the cellular automata
and differential equation simulations produce in a similar
manner a further distinction between the motifs dynamic
efficacy. The intriguing property of isodynamicity was
identified showing motifs with the same number of nodes
and different topology to have the same overall rate of
input-to-output transformation. If shown to be present in
larger biological networks, the observed isodynamic prop-
erty could indicate a level of biological robustness at a
topological level. Further topology-dynamics studies
involving construction of networks from combinations of
such structural blocks will aid in increasing our under-
standing of complex biological networks.

Abbreviations
CA – Cellular Automata, ODE – Ordinary Differential
Equations, FFP – Feed-Forward Pattern, FFA through FFG
– Feed-Forward Series A through G
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